
User’s Guide
Version 3.8.1

December, 1998

ii

Copyright © 1996–1998 by Dolphin Inteconnect Solutions, Inc. All rights reserved.
Copyright © 1993–1996 by BBN Systems and Technologies, a division of BBN Corporation.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Dolphin Interconnect
Solutions, Inc. (Dolphin Interconnect).

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

Dolphin Interconnect has prepared this manual for the exclusive use of its customers, personnel, and licensees. The
information in this manual is subject to change without notice, and should not be construed as a commitment by Dolphin
Interconnect. Dolphin Interconnect assumes no responsibility for any errors that appear in this document.

TotalView, TimeScan, and Gist are trademarks of Dolphin Interconnect Solutions, Inc.

All other brand names are the trademarks of their respective holders.

Revision 3.8.1: Printed December 1998

About This Guide
This guide describes how to use TotalView, a source-level and machine-level
debugger with an easy-to-use interface (based on the X Window System) and
support for debugging multiprocess programs. The guide assumes that you are
familiar with the C programming language, UNIX operating systems, the X
Window System, and the processor architecture of the platform on which you’re
running TotalView.

This guide covers the general use of TotalView on any platform. Most of the
examples and illustrations in this guide show TotalView running on a workstation.
To learn about the specifics of running TotalView on your platform, refer to
Appendix A, “Compilers and Environments,” on page 303, Appendix B,
“Operating Systems,” on page 321, and Appendix C, “Architectures,” on page 333.

Getting Started

To get started quickly with TotalView:

• Install the software.

The TotalView Installation Guide provides instructions.

• Learn the basics of TotalView.

Chapter 2, “TotalView Basics,” on page 15 and Chapter 6, “Debugging
Programs,” on page 115 provide instructions.
TotalView User’s Guide iii

 About This Guide
Supported Platforms

TotalView is available for a variety of platforms and can be used to debug programs
on the native platform or on remote systems, such as parallel processors,
supercomputers, or digital signal processor boards.

If TotalView is not yet available for your system configuration, please contact
Dolphin Interconnect about porting TotalView to suit your needs:

ToolWorks Group
Dolphin Interconnect Solutions, Inc.
111 Speen Street
Framingham, MA 01701-2090
Internet E-mail: toolworks@dolphinics.com
1-800-856-3766 in the United States
(+1) 508-875-3030 worldwide

Reporting Problems

Please contact us if you have problems installing TotalView, questions that are not
answered in the product documentation or on our Web site, or suggestions for new
features or improvements.

Our Internet E-Mail address is: tv-support@dolphinics.com
1-800-856-3766 in the United States
(+1) 508-875-3030 worldwide

If you are reporting a problem, please include the following information:

• The version of TotalView

• The platform on which you’re running TotalView

• An example that illustrates the problem

• A record of the sequence of events that led to the problem

See the TotalView Release Notes for complete instructions on how to report
problems.
iv TotalView User’s Guide

Typographical Conventions
Typographical Conventions

This guide uses the following conventions to present information:

bold An exact filename, command, or user input.

italic In examples indicates a variable or a value that you
supply. In text, emphasizes important words or phrases.

typewriter Computer output.

Control-Z Press the keys simultaneously; for example, hold down
the Control key and press the Z key.

^Z Shorthand for Control-Z.

Esc Z Press the first key and then the second; for example,
press the Escape key and then press the Z key.

M-I Shorthand for Meta-I. (The Meta key varies with your
platform; usually it is the Alt key.)

 [] Optional items in command syntax descriptions.

. . . Repetition of the previous command or input.

(G) The keyboard equivalent for a command in
parentheses; for example, Go Group (G).
TotalView User’s Guide v

 About This Guide

vi TotalView User’s Guide

Contents
List of Figures xix

List of Tables xxiii

CHAPTER 1:
Introduction 1
TotalView’s Advantages 2

TotalView’s Windows 4

Examining Source and Machine Code 6

Controlling Processes and Threads 6

Using Action Points 7

Examining and Manipulating Data 8

Visualizing Array Data 9

Distributed Debugging 10

Multiprocess Programs 12

Multithreaded Programs 13

Context-Sensitive Help 14

CHAPTER 2:
TotalView Basics 15
Compiling Programs 16

Starting TotalView 16

Using the Mouse Buttons 17

Using Menu and Keyboard Commands 18
TotalView User’s Guide vii

Contents
Getting Help 19

Using the Primary Windows 20
Starting A Process 21
Sizing Process Window Panes 23
Navigating in the Process Window 24
Navigating in the Root Window 24
The Process Window Stack 25

Scrolling Windows and Fields 25
Scrolling Windows 25
Scrolling Multiline Fields 27

Diving into Objects 28

Editing Text 29

Searching for Text 31

Using the Spelling Corrector 32

Saving the Contents of Windows 32

Exiting from the TotalView Debugger 33

CHAPTER 3:
Setting Up a Debugging Session 35
Compiling Programs 36

Starting the TotalView Debugger 37

Loading Executables 38
Loading a New Executable 38
Reloading a Recompiled Executable 39

Attaching to Processes 40
Attaching Using Show All Unattached Processes 40
Attaching Using New Program Window 42

Detaching from Processes 43

Examining a Core File 43

Determining the Status of Processes and Threads 44
Process Status 45
Thread Status 45
Unattached Process States 46
Attached Process States 47

Handling Signals 48

Setting Search Paths 52

Setting Command Arguments 54
viii TotalView User’s Guide

Contents
Specifying Environment Variables 55

Setting Input and Output Files 56

Monitoring TotalView Sessions 57

CHAPTER 4:
Setting Up Remote Debugging Sessions 59
Debugging Remote Processes 60

Loading a Remote Executable 60
Attaching to a Remote Process 61

Connecting to Remote Machines 63

Starting the Debugger Server for Remote Debugging 64
The Auto-Launch Feature 64
Auto-Launch Options 65

The Server Launch Command 66
Changing the rsh Command 67
Changing the Arguments 68
The Connection Timeout 68
Disabling Auto-Launch 69
Changing the Options 69

Starting the Debugger Server Manually 70

Debugging Over a Serial Line 72
Start the TotalView Debugger Server 73
Starting TotalView on a Serial Line 73
New Program Window 74

CHAPTER 5:
Setting Up Parallel Debugging Sessions 75
Debugging MPI Applications 76

Debugging MPICH Applications 77
Starting TotalView on an MPICH Job 77
Attaching to an MPICH Job 79
MPICH P4 procgroup Files 80

Debugging Digital MPI Applications 81
Starting TotalView on a Digital MPI Job 81
Attaching to a Digital MPI Job 81

Debugging IBM MPI (PE) Applications 82
Preparing to Debug a PE Application 82
Starting TotalView on a PE Job 83
Setting Breakpoints 84
Starting Parallel Tasks 84
TotalView User’s Guide ix

Contents
Attaching to a PE Job 85
Attach from a Node Running poe 85
Attach from Node Not Running poe 85

Debugging SGI MPI Applications 86
Starting Totalview with SGI MPI 86
Attaching to an SGI MPI Job 86

Displaying Message Queue State 87
Message Queue Display Basics 87
Message Operations 89

MPI Process Diving 90
MPI Buffer Diving 90
Pending Receive Operations 91
Unexpected Messages 92
Pending Send Operations 93

MPI Debugging Troubleshooting 94

Debugging PVM and DPVM Applications 95
Supporting Multiple Sessions 95
Setting Up ORNL PVM Debugging 96
Starting an ORNL PVM Session 96
Starting a DPVM Session 98
PVM/DPVM Automatic Process Acquisition 99
Attaching to PVM/DPVM Tasks 100
Reserved Message Tags 102
Debugging Dynamic Libraries 102
Cleanup of Processes 102

Debugging Portland Group, Inc. (PGI) HPF Applications 103
Installing TotalView for HPF 104

Dynamically Loaded Library 104
Setting Up PGHPF Compiler Defaults 105
Setting Up MPICH 105
Setting TotalView Defaults 106
Compiling HPF for Debugging 106
Starting HPF Programs 107

PGHPF smp and rpm libraries 107
Starting HPF Programs with MPICH 107

Workstation Clusters Using MPICH 107
IBM Parallel Environment 107

HPF TotalView Advantages 108
Debugging generated FORTRAN 77 109

Parallel Debugging Tips 110
x TotalView User’s Guide

Contents
General Parallel Debugging Tips 110
MPICH Specific Debugging Tips 112
IBM PE Specific Debugging Tips 112

CHAPTER 6:
Debugging Programs 115
Finding the Source Code for Functions 116

Resolving Ambiguous Names 117

Finding the Source Code for Files 119
Source File Extensions 119

Examining Source and Assembler Code 120

Current Stack Frame 122

Editing Source Text 122

Changing the Editor Launch String 122

Interpreting Status and Control Registers 124

Starting Processes and Threads 124
Creating a Process without Starting it 125
Creating a Process by Single-Stepping 125

Stopping Processes and Threads 127

Holding and Releasing Processes 128

Examining Process Groups 129
Types of Process Groups 129
Displaying Process Groups 130
Changing Program Groups 131
Finding Active Processes 132

Setting a Breakpoint 133

Single-Stepping 133
Process-Level Single-Stepping 134
Group-Level Single-Stepping 134
Thread-Level Single-Stepping 135
Thread-Level Control 135
Selecting Source Lines 136

Single-Step Commands 137
Stepping Into Functions Calls 137
Stepping Over Function Calls 138
Executing to a Selected Line 138
Executing to the Completion of a Function 139

Displaying Thread and Process Locations 140
TotalView User’s Guide xi

Contents
Continuing with a Specific Signal 142

Setting the Program Counter 143

Deleting Processes 144

Restarting Programs 145

CHAPTER 7:
Examining and Changing Data 147
Displaying Variable Windows 148

Displaying Local Variables and Registers 148
Displaying a Global Variable 149
Displaying All Global Variables 149
Displaying Areas of Memory 150
Displaying Machine Instructions 151
Closing Variable Windows 152

Diving in Variable Windows 152

Changing the Values of Variables 153

Changing the Data Type of Variables 154
How TotalView Displays C Data Types 154

If You Prefer C Cast Syntax 155
Pointers to Arrays 155
Arrays 156
Typedefs 157
Structures 157
Unions 157

Built-In Type Strings 158
Character arrays (<string> data type) 160
Areas of memory (<void> data type) 160
Instructions (<code> data type) 160

Type Casting Examples 161
Example: Displaying the argv Array 161
Example: Displaying Declared Arrays 161
Example: Displaying Allocated Arrays 161

Opaque Type Definitions 162

Changing the Address of Variables 162

Changing Type Strings to Display Machine Instructions 163

Displaying C++ Types 164
Classes 164
Changing Class Types in C++ 165

Displaying Fortran Types 166
xii TotalView User’s Guide

Contents
Displaying Fortran Common Blocks 166
Displaying Fortran Module Data 167
Debugging Fortran 90 Modules 168
F90 User Defined Type 169
F90 Deferred Shape Array Type 169
F90 Pointer Type 170
Displaying Large Arrays 171

Displaying Array Slices 172
Slice Descriptions 172
Strides 174
Using Slices in the Variable Command 176

Displaying a Variable in All Processes or Threads 177
Diving in a Laminated Pane 179
Editing a Laminated Variable 179
Visualizing a Laminated Data Pane 179

Visualizing Array Data 180

Displaying Mutex Information 181

Displaying Condition Variable Information 184

CHAPTER 8:
Setting Action Points 187
Action Points 188

Setting Breakpoints 190
Setting

Source-Level Breakpoints 190
Selecting Ambiguous Source Lines 190
Diving into Ambiguous Source Lines 192
Toggling Breakpoints at Locations 193
Toggling Breakpoints at Ambiguous Locations 195
Setting Machine-Level Breakpoints 196
Thread-Specific Breakpoints 197
Breakpoints for Multiple Processes 197
Breakpoint for Programs that fork()/execve() 199

Processes That Call fork() 199
Processes That Call execve() 199

Example: Multiprocess Breakpoint 200

Process Barrier Breakpoints 201
Process Barrier Breakpoint States 201
Setting a Process Barrier Breakpoint 201
Releasing Processes from Process Barrier Points 203
TotalView User’s Guide xiii

Contents
Toggling Between a Breakpoint and a Process Barrier Point 204
Deleting a Process Barrier Point 204
Changes when Setting and Clearing a Barrier Point 204

Defining Evaluation Points 205
Setting Evaluation Points 206
Setting Conditional Breakpoints 207
Patching Programs 207

Conditionally Patching Out Code 208
Patching In a Function Call 208
Correcting Code 208

Interpreted vs. Compiled Expressions 209
Interpreted expressions 209
Compiled expressions 209

Defining and Using Event Points 210

Controlling Action Points 211
Displaying the Action Points Window 211
Displaying the Action Point Options Dialog 212
Commands for Controlling Action Points 212

Saving Action Points in a File 215

Evaluating Expressions 215

Writing Code Fragments 218
Intrinsic Variables 218
Built-In Statements 219
C Constructs Supported 221

Syntax 221
Data Types and Declarations 221
Statements 221

Fortran Constructs Supported 222
Syntax 222
Data Types and Declarations 223
Statements 223

Writing Assembler Code 224

CHAPTER 9:
Visualizing Data 231

How the Visualizer Works 232

Configuring TotalView to Launch the Visualizer 234

Data Types that TotalView Can Visualize 236

Visualizing Data from the Variable Window 237
xiv TotalView User’s Guide

Contents
Visualizing Data in Expressions 239
Visualizer Animation 240

The TotalView Visualizer 241
Directory Window 242
Data Windows 244

Views of Data 246
Graph Data Window 247

Displaying Graphs 248
Manipulating Graphs 248

Surface Data Window 249
Displaying Surface Data 251
Manipulating Surface Data 253

Launching the Visualizer from Command Line 254

Adapting a Third Party Visualizer to the TotalView Debugger 256

CHAPTER 10:
Troubleshooting 259

CHAPTER 11:
X Resources 263
TotalView X Resources 264

Window Locations 264

Visualizer X Resources 283

CHAPTER 12:
TotalView Command Syntax 287

Synopsis 287
Description 287
Arguments 287
Options 288

CHAPTER 13:
TotalView Debugger Server Command Syntax 299

Options 300

APPENDIX A:
Compilers and Environments 303
Supported Compilers and Environments 304

AIX on RS/6000 Systems 304
Digital UNIX on Digital Alpha Systems 305
TotalView User’s Guide xv

Contents
IRIX on SGI MIPS Systems 306
SunOS 4 on Solaris Systems 307
SunOS 5 on SPARC Solaris Systems 308
SunOS 5 on Intel-x86 Solaris Systems 309

Compiling with Debugging Symbols 310
AIX on RS/6000 Systems 310
Digital UNIX on Digital Alpha Systems 312
IRIX on SGI MIPS Systems 313
SunOS 4 on Solaris Systems 314
SunOS 5 on SPARC or Intel-x86 Solaris Systems 315

Compiling with Exception Data on Alpha Digital UNIX 316

Linking with the dbfork Library 317
AIX on RS/6000 Systems 317

Linking C++ Programs with dbfork 317
Alpha Digital UNIX 318
SunOS 4 318
SunOS 5 SPARC or Intel-x86 319
IRIX6-MIPS 319

APPENDIX B:
Operating Systems 321
Supported Operating Systems 322

Mounting the /proc File System 323
Digital UNIX, SunOS 5, and IRIX 323
Digital UNIX and SunOS 5 323
IRIX 324

Swap Space 324
Digital UNIX 325
AIX 326
SunOS 4 326
SunOS 5 327
IRIX 328

Shared Libraries 329

Remapping Keys 330

Expression System 330
AIX 330
Digital UNIX 331
Expression on the Power 331
xvi TotalView User’s Guide

Contents
APPENDIX C:
Architectures 333
Power 334

Power General Registers 334
Power MSR Register 335
Power Floating-Point Registers 336
Power FPSCR Register 337
Using the Power FPSCR Register 339
Power Floating-Point Format 339

SPARC 340
SPARC General Registers 340
SPARC PSR Register 341
SPARC Floating-Point Registers 341
SPARC FPSR Register 342
Using the SPARC FPSR Register 344
SPARC Floating-Point Format 344

Alpha 345
Alpha General Registers 345
Alpha Floating-Point Registers 346
Alpha FPCR Register 346
Alpha Floating-Point Format 347

MIPS 348
MIPS General Registers 348
MIPS SR Register 349
MIPS Floating-Point Registers 351
MIPS FCSR Register 351
Using the MIPS FCSR Register 353
MIPS Floating-Point Format 353
MIPS Delay Slot Instructions 353

Intel-x86 355
Intel-x86 General Registers 355
Intel-x86 Floating-Point Registers 356
Intel-x86 FPCR Register 357
Using the Intel-x86 FPCR Register 358
Intel-x86 FPSR Register 358
Intel-x86 Floating-Point Format 359
TotalView User’s Guide xvii

Contents
Glossary 361

Index 367
xviii TotalView User’s Guide

List of Figures
Figure 1. Debugging a Remote Program with TotalView 2

Figure 2. Debugging a Distributed Program with TotalView 3

Figure 3. Sample TotalView Session 4

Figure 4. The TotalView Debugger Server 11

Figure 5. Example TotalView Menu and Submenu 18

Figure 6. Root Window 20

Figure 7. Process Window 21

Figure 8. Program Counter 23

Figure 9. The Sizing Cursor 23

Figure 10. Process Window Navigation Controls 24

Figure 11. Scroll Bar 26

Figure 12. Scrollable Multiline Field 27

Figure 13. Editing Cursor 29

Figure 14. Dialog Box for Spelling Corrector 32

Figure 15. New Program Window Dialog Box 38

Figure 16. Unattached Processes Window 41

Figure 17. New Program Window Dialog Box 42

Figure 18. Root Window Showing Process and Thread Status 46

Figure 19. Dialog Box for Set Signal Handling Mode Command 50

Figure 20. Dialog Box for Set Search Directory Command 53

Figure 21. Dialog Box for Set Command Arguments Command 54

Figure 22. Environment Variables Dialog Box 56

Figure 23. Dialog Box for Input from File Command 57

Figure 24. Event Log Window 58
TotalView User’s Guide xix

List of Figures
Figure 25. New Program Window Dialog Box 60

Figure 26. Remote Host Connection 63

Figure 27. Auto-Launch Feature 65

Figure 28. Dialog Box for Launching Debugger Server 69

Figure 29. Manual Launching of Debugger Server 71

Figure 30. TotalView Debugging Session over a Serial Line 72

Figure 31. New Program Window Dialog Box 74

Figure 32. Dialog Box for Stopping Spawned Processes 78

Figure 33. Processes that TotalView doesn’t own Window 79

Figure 34. Parallel Tasks Dialog Box 84

Figure 35. Message State Window 88

Figure 36. Message State Pending Receive Operation 91

Figure 37. Message State Unexpected Messages 92

Figure 38. Message State Pending Send Operation 93

Figure 39. PVM Tasks and Configuration Window 101

Figure 40. Block Distributed Array on Three Processes 109

Figure 41. Function Name Dialog 116

Figure 42. Dialog for Resolving Ambiguous Function Names 117

Figure 43. Different Ways to Display Assembler Code 121

Figure 44. Example of Program Groups and Share Groups 130

Figure 45. Process Groups Window 130

Figure 46. Single Process Group Window 131

Figure 47. Dialog for Changing Process Groups 132

Figure 48. Dialog for Resolving Ambiguous Source Lines 136

Figure 49. Dimmed Process Information in the Root Window 141

Figure 50. Diving into Local Variables and Registers 148

Figure 51. Variable Window for a Global Variable 149

Figure 52. Global Variables Window 150

Figure 53. Variable Window for Area of Memory 151

Figure 54. Variable Window with Machine Instructions 151

Figure 55. Nested Dives 152

Figure 56. Displaying Nested C++ Classes 164

Figure 57. C++ Type Cast to Base Class Dialog Box 165
xx TotalView User’s Guide

List of Figures
Figure 58. C++ Type Cast to Derived Class Dialog Box 165

Figure 59. Diving into Common Block List in Stack Frame Pane 166

Figure 60. Fortran Modules Window 167

Figure 61. Fortran 90 User Defined Type 169

Figure 62. F90 Pointer Value 171

Figure 63. Slice Displaying the Four Corners of an Array 174

Figure 64. Fortran Array with Inverse Order and Limited Extent 175

Figure 65. Variable Window for array2 176

Figure 66. Laminated Scalar Variable 177

Figure 67. Laminated Variable at Different Addresses 178

Figure 68. Laminated Array and Structure 179

Figure 69. Mutex Info Window 181

Figure 70. Mutex Data Window 183

Figure 71. Condition Variable Window 184

Figure 72. Action Point Symbols 189

Figure 73. Breakpoint Symbol 190

Figure 74. Ambiguous Source Line Selection Dialog Box 191

Figure 75. Ambiguous Source Line Dive Dialog Box 192

Figure 76. Toggle Breakpoint at Location Dialog Box 193

Figure 77. Ambiguous Function Name Dialog Box 195

Figure 78. Action Point Options Dialog Box 198

Figure 79. Action Point Options Dialog Box 202

Figure 80. Process Barrier Breakpoint in Process and Root Windows 203

Figure 81. Stopped Execution of Compiled Expression 210

Figure 82. Action Points Window 211

Figure 83. Action Point Options Dialog Box 212

Figure 84. Sample Expression Window 216

Figure 85. ASM Button in Expression Window 224

Figure 86. TotalView Visualizer Connection 232

Figure 87. TotalView Visualizer Relationships 233

Figure 88. The Visualizer Launch Window 234

Figure 89. A Three Dimensional Array Sliced to Two Dimensions 236

Figure 90. Variable Window 237
TotalView User’s Guide xxi

List of Figures
Figure 91. Visualizer Windows 241

Figure 92. Sample Visualizer Directory Window 242

Figure 93. Sample Visualizer Data Windows 244

Figure 94. Visualizer Graph Data Window 247

Figure 95. Display of Random Data 249

Figure 96. Two Dimensional Surface Visualizer Data Display 250

Figure 97. Three Dimensional Surface Visualizer Data Display 251
xxii TotalView User’s Guide

List of Tables
Table 1. Mouse Button Functions 17
Table 2. Uses for Diving 28

Table 3. Field Editor Commands 30
Table 4. Compiler Considerations 36
Table 5. Summary of Unattached Process States 47

Table 6. Summary of Attached Process and Thread States 47

Table 7. Default Signal Handling Behavior 49

Table 8. PGHPF Dynamic Library Search Order 104

Table 9. Source Language Mapping 119

Table 10. Ways to Display Source and Assembler Code 120

Table 11. Common Type Strings 155

Table 12. Built-In Type Strings 158
Table 13. Breakpoint at Location Actions 194

Table 14. Setting Breakpoints in Multiprocess Programs 200

Table 15. Clearing, Disabling, Enabling, Suppressing, and Unsuppressing Action
Points 213

Table 16. Intrinsic Variables 218

Table 17. Built-In Statements That Can Be Used in Expressions 219
Table 18. TotalView Assembler Operators 225

Table 19. TotalView Assembler Pseudo Ops 226

Table 20. $visualize examples for C and Fortran 239
Table 21. Directory Window Menu Commands 243

Table 22. Data Window Menu Commands 245

Table 23. Graph Data Window Options Dialog 248

Table 24. Graph Data Window Manipulations 248
TotalView User’s Guide xxiii

List of Tables
Table 25. Surface Data Window Options 252

Table 26. Surface Data Window Menu Commands 253

Table 27. Surface Data Window Manipulations 253

Table 28. Data-Set Header Fields 256

Table 29. Symptoms and Solutions 259
Table 30. C++ Demangling Command Line Options 290

Table 31. Supported Compilers and Environments on AIX 304

Table 32. Supported Compilers and Environments on Digital UNIX 305

Table 33. Supported Compilers and Environments on IRIX 306

Table 34. Supported Compilers and Environments on SunOS 4 307

Table 35. Supported Compilers and Environments on SunOS 5 SPARC 308

Table 36. Supported Compilers and Environments on SunOS 5 x86 309

Table 37. Compiling with Debugging Symbols on AIX 310

Table 38. Compiling with Debugging Symbols on Digital UNIX 312

Table 39. Compiling with Debugging Symbols on IRIX-MIPS 313

Table 40. Compiling with Debugging Symbols on SunOS 4 314

Table 41. Compiling with Debugging Symbols on SunOS 5 315

Table 42. Commands for Determining Whether /proc is Mounted 323
Table 43. Commands for Automatically Mounting /proc File System 324
Table 44. Power General Purpose Integer Registers 334
Table 45. Power MSR Register Bit Settings 335

Table 46. Power Floating-Point Registers 336
Table 47. Power FPSCR Register Bit Settings 337
Table 48. SPARC General Registers 340
Table 49. SPARC PSR Register Bit Settings 341

Table 50. SPARC Floating-Point Registers 341
Table 51. SPARC FPSR Register Bit Settings 342
Table 52. Alpha General Purpose Integer Registers 345
Table 53. Alpha Floating-Point Registers 346
Table 54. Alpha FPCR Register Bit Settings 346
Table 55. MIPS General (Integer) Registers 348
Table 56. MIPS SR Register Bit Settings 349

Table 57. MIPS Floating-Point Registers 351
Table 58. MIPS FCSR Register Bit Settings 351
Table 59. Intel-x86 General Registers 355
Table 60. Intel-x86 Floating-Point Registers 356
xxiv TotalView User’s Guide

List of Tables
Table 61. Intel-x86 FPCR Register Bit Settings 357

Table 62. Intel-x86 FPSR Register Bit Settings 358
TotalView User’s Guide xxv

List of Tables
xxvi TotalView User’s Guide

0

CHAPTER 1:

Introduction
The TotalView debugger is part of a suite of software development tools for
debugging, analyzing, and tuning the performance of programs, including
multiprocess multithreaded programs. In addition to TotalView, you can purchase
the TimeScan Performance Analyzer to generate and analyze event logs. This
chapter highlights the features of TotalView and includes the following sections:

• TotalView’s advantages

• TotalView’s windows

• Examining source and machine code

• Controlling processes and threads

• Using Action Points

• Examining and manipulating data

• Visualizing array data

• Distributed debugging

• Debugging multiprocess and multithreaded programs

• Context-sensitive help
TotalView User’s Guide 1

CHAPTER 1: Introduction
TotalView’s Advantages

TotalView provides many advantages over conventional UNIX debuggers (such
as dbx, gdb, and adb):

• You can learn TotalView quickly and be more productive because of its
graphical interface (based on the X Window System). TotalView’s interface
provides windows, pop-up menus, and a context-sensitive help system. You
can enter most commands with the mouse. Further, with TotalView’s
interface, you can already see a lot of useful information without entering
any commands.

• You can debug multiprocess multithreaded programs because TotalView can
manage multiple processes, and multiple threads within a process. TotalView
displays each process in its own window, showing the source code, stack
trace, and stack frame for one or more threads in the process. You can display
all process windows simultaneously and perform all debugging tasks across
processes.

• You can debug remote programs over the network because of TotalView’s
distributed architecture, as shown in Figure 1. Remote programs are programs
that run on a different machine from TotalView, while native programs are
programs that run on the same machine as TotalView.

Figure 1. Debugging a Remote Program with TotalView

TotalView

Native executable Remote executable

Machine 2

Machine 1

Remote debugging

Native debugging

Network
2 TotalView User’s Guide

TotalView’s Advantages
• You can debug distributed programs over the network because TotalView
can manage multiple remote programs and multiprocess multithreaded
programs simultaneously, as shown in Figure 2. Distributed programs are
programs that run on a group of separate homogeneous machines.

• You can acquire processes automatically for several popular runtime
libraries, such as HPF, PVM, PE, and MPI. Parallel and distributed programs
run in many processes, and your debugger must know about them for you to
debug them correctly. When you start TotalView in HPF, MPI, PE, or PVM,
TotalView automatically detects these processes and attaches to them so you
don’t have to attach to them manually. This process is called automatic
process acquisition. If the process is on a remote machine, automatic process
acquisition also automatically starts the TotalView debugger server.

• You can write source code fragments within TotalView and insert them
temporarily into the program you’re debugging. On some platforms, you can
write machine code fragments as well. This feature can save you time in
testing bug fixes.

• You can debug code that was not compiled with the –g switch or for which
you don’t have access to the source file because TotalView provides machine-
level debugging features.

• You can attach to running processes, so you can debug processes that were
not started under TotalView.

Figure 2. Debugging a Distributed Program with TotalView

TotalView

Native executable

Machine 1

Distributed debugging

Network

Distributed executable

Machine 2

Distributed executable

Machine 3

Distributed executable

Machine 4
TotalView User’s Guide 3

CHAPTER 1: Introduction
TotalView’s Windows

TotalView displays extensive information in its windows, as shown in Figure 3.

Figure 3. Sample TotalView Session

Process windows Variable window

Process Groups windowRoot window
4 TotalView User’s Guide

TotalView’s Windows
Figure 3 shows an example of a TotalView session containing the following
windows:

Root Lists the name, location (if remote process), process
ID, status, and optionally the list of threads for each
process you are debugging. Lists the thread ID, status
and current routine executing for each thread.

Process Displays information about a process and a thread
within that process. Displays the stack trace, stack
frame, and source code for the selected thread in a series
of separate panes. Optionally displays disassembled
machine code or interleaved source code and
disassembled machine code.

Process Groups Displays the process groups for all of the multiprocess
programs you are debugging.

Variable Displays the address, data type, and value of a local
variable, register, or global variable. Also displays the
values (and optionally, the machine-level instructions)
stored in a block of memory.

The process window provides very detailed information about a process, including:

• The name, location (if remote process), process ID, and status of the process

• The name, location (if remote thread), thread ID, and status of the selected
thread within the process

• The stack trace for the thread, with the selected routine highlighted

• The stack frame for the selected routine

• The source code for the selected frame (providing the routine was compiled
with source line information) or disassembled machine code

• The current Program Counter (PC) for the selected stack frame, which is
represented by an arrow on the line number of source code

• The breakpoints and evaluation points that are set in the source or machine
code, as shown in the source pane

• The list of threads that exist within the process

• The list of breakpoints and evaluation points that are set in the process.
TotalView User’s Guide 5

CHAPTER 1: Introduction
Examining Source and Machine Code

TotalView provides the following features for examining your code:

• Dive on functions

When you dive on a function, its source code is displayed in the source code
pane of the process window. See “Diving into Objects” on page 28 for more
information.

• Search for functions

You can search for functions using a dialog in the process window. See
“Finding the Source Code for Functions” on page 116 for more information.

Controlling Processes and Threads

For controlling processes and threads, the TotalView debugger offers a full range
of functions from the process window.

• Start and stop processes and threads

You can start, stop, resume, delete, and restart your program. See page 124,
page 127, and page 144 for information about how to perform these tasks.

• Attach to existing processes

TotalView provides a window for examining processes that are not running
under the debugger’s control. Attaching to one of these processes is as easy
as diving on it. See “Attaching to Processes” on page 40 for more information.

• Examine core files

When you start TotalView, you can load a core file and examine it in the
same way as any executable. Or, you can load a core file anytime during a
TotalView debugging session. See “Examining a Core File” on page 43 for
more information.
6 TotalView User’s Guide

Using Action Points
• Change the way TotalView handles signals

TotalView provides a dialog for tailoring how signals are handled. TotalView
can stop the process and place it in the stopped state, stop the process and
place it in the error state, send the signal on to the process, or discard the
signal. See “Handling Signals” on page 48 for details.

• Single step

You can single step through your program or step over function calls. You
can also continue execution to a selected source line or instruction and
continue execution until a function completes execution. TotalView supports
process level, process group level, and on some systems, thread level single
stepping. See “Single-Stepping” on page 133 for details.

• Reload the executable file

After editing and recompiling a program, you can reload the executable file.
See “Loading Executables” on page 38 for more information.

• Change the program counter (PC)

You can change the value of the PC to resume execution at a different point
in the program. See “Setting the Program Counter” on page 143 for more
information.

Using Action Points

TotalView provides a broad range of action points: points in a program where you
stop execution or evaluate an expression.

• Action points

You can set, delete, enable, disable, suppress, and unsuppress the following
kinds of action points at both the source level and machine level.

• Breakpoints

• Barrier breakpoints

• Conditional breakpoints are breakpoints that occur only if a code
fragment (expression) is satisfied
TotalView User’s Guide 7

CHAPTER 1: Introduction
• Evaluation points are points where a code fragment is evaluated

• Expressions and code fragments

With the expression evaluation window and evaluation points, you can write
and evaluate fragments of code, including function calls used by the current
process. Depending on the platform, you can write fragments in C, C++,
Fortran, or Assembler. On most platforms, TotalView interprets code
fragments, but on some platforms, TotalView compiles the fragments.

See Chapter 8, “Setting Action Points,” on page 187 for more information
about setting action points and writing evaluation expressions.

Examining and Manipulating Data

The TotalView debugger also offers a number of useful functions for examining
and manipulating data in your program:

• Diving

You can examine data by diving (clicking the right mouse button) into the
variable or by issuing a command. You can examine local variables, registers,
global variables, machine-level instructions, and areas of memory. In all
cases, the debugger displays the information about the variable, register, or
memory region in a separate variable window. See“Diving into Objects” on
page 28 for more information.

• Changing values

You can edit the value of a variable or a memory location to change it for the
current running process. See “Changing the Values of Variables” on page 153
for more information.

• Changing types

You can edit the type strings of variables to display the data in different
formats. See “Changing the Data Type of Variables” on page 154 for more
information.
8 TotalView User’s Guide

Visualizing Array Data
• Laminated variables

You can examine the value of a variable across multiple processes or multiple
threads in a single data window. See “Displaying a Variable in All Processes
or Threads” on page 177 for more information.

Visualizing Array Data

The TotalView debugger allows you to visualize array data in the programs you
are debugging. This gives you an overall picture of your data and helps you to find
incorrect data quickly and easily.

The Visualize program runs as a separate process, connecting to TotalView by a
pipe. You interact with TotalView to choose what to visualize and when to update
the images, and you interact with the Visualizer program to choose how to display
the data.

You can visualize array data in the following ways:

• Visualize (v) variable window menu item

You can visualize the array data displayed in a variable window on demand
by invoking the Visualize (v) menu item. This command gives you a visual
snapshot of the array data listed in the window. Each time you visualize the
same array data, the visualizer image is updated.

• $visualize expression system built-in statement

You can use the $visualize expression system built-in statement in
expressions called both from the expression evaluation window, and
evaluation action points. The expression system allows you to visualize
several different data-sets from a single expression. Each time the expression
is evaluated, the set of images are automatically updated in the Visualizer
program, allowing you to animate the visual representation of your data.

Note: The Visualize program is not available on all platforms.
TotalView User’s Guide 9

CHAPTER 1: Introduction
TotalView allows you to use your own visualization program. The data format
generated by TotalView is described in a header file included with the TotalView
distribution. For more information about visualization, see “Visualizing Data” on
page 231.

Distributed Debugging

TotalView provides a distributed architecture that suits many different operating
environments, including:

• Remote programs running on a separate machine from TotalView

• Distributed programs running on a set of homogeneous machines

• Multiprocess programs running on a multiprocessor machine

• Multiprocess programs running on a cluster of separate homogeneous
machines

• Client-server programs with the server running on one machine type and the
clients running on another machine type

The machine on which TotalView is running is known as the host machine, while
the machine on which the process being debugged is running is known as the target
machine. When the host and target machines are the same, you can use TotalView
as a native debugger. When the host and target machines are separate machines,
you can use TotalView as a distributed debugger. When you use TotalView as a
distributed debugger, it starts a process on each remote target machine. This process
is called the TotalView Debugger Server (tvdsvr), and TotalView communicates
with it using standard TCP/IP protocols (see Figure 4).

Note: Distributed debugging currently requires that all machines
have the same machine architecture and operating system
10 TotalView User’s Guide

Distributed Debugging
There are no differences in debugging distributed programs; TotalView offers the
same set of rich features as with native programs and multiprocess programs.

In addition, on some platforms, TotalView can debug programs that use the HPF,
MPI, IBM Parallel Environment (PE) or Parallel Virtual Machine (PVM) libraries,
which are popular multiprocess programming libraries.

For more information on distributed debugging, refer to:

• “Debugging Remote Processes” on page 60

• “Debugging MPI Applications” on page 76

• “Debugging IBM MPI (PE) Applications” on page 82

• “Debugging PVM and DPVM Applications” on page 95

• “Debugging Portland Group, Inc. (PGI) HPF Applications” on page 103

Figure 4. The TotalView Debugger Server

TotalView

Native executable

TotalView Debugger Server

Remote executable

Target machine

Host machine

Network
TotalView User’s Guide 11

CHAPTER 1: Introduction
Multiprocess Programs

The TotalView debugger has some special features for debugging multiprocess
programs. Note that all of the user interface and debugging features that were
discussed earlier in this chapter are also available for multiprocess programs.

• Separate windows for each process

Each process has its own process window displaying information for that
particular process. You can monitor the status, thread list, breakpoint list and
source code, for each process in a multiprocess program. You don’t have to
display all the process windows in a multiprocess program; you can choose
which process windows to open and close.

• Sharing of breakpoints among processes

By setting options on the breakpoint in a parent process, you can control
whether or not the breakpoint is shared among the child processes. You can
also control whether or not all processes in the group stop when any process
in the group reaches the breakpoint. See “Breakpoints for Multiple Processes”
on page 197 for more information.

• Process groups

The TotalView debugger treats multiprocess programs as process groups. If
you debug several multiprocess programs at once, you can view information
about all process groups. You also can view information about a particular
multiprocess program by requesting information about its process group. You
can start and stop an individual process group. See “Examining Process
Groups” on page 129 for more information.

• Process barrier breakpoints

In addition to “normal” breakpoints, TotalView allows you to create process
barrier breakpoints. A process barrier breakpoint (process barrier point) is
just like a normal breakpoint, but it holds processes that reach the barrier
point until all the processes in the group reach it. When the last process in
the group reaches a barrier, all processes in the group are released. While a
process is held, attempts to continue the process do nothing. This is useful
for synchronizing a group of processes at the same location. See “Process
Barrier Breakpoints” on page 201 for more information.
12 TotalView User’s Guide

Multithreaded Programs
• Process group-level single-stepping

TotalView allows you single-step groups of processes with a single
command. See “Group-Level Single-Stepping” on page 134 for more
information.

• Single event log containing information for all processes

The TotalView debugger logs significant events about each process you are
debugging. Thus, you can view the history of your entire debugging session
by scrolling through the event log window. See “Monitoring TotalView
Sessions” on page 57 for more information.

• Automatically attach to child processes

If a program calls fork() or execve(), TotalView automatically attaches to
the child processes and includes them in the process group. See“Attaching
to Processes” on page 40 and “Breakpoint for Programs that fork()/execve()”
on page 199 for more information.

• Multiple symbol tables

If you are debugging more than one executable at a time, TotalView
automatically handles the symbol table for each executable

Multithreaded Programs

Most modern operating systems support running programs with multiple threads
of execution. The implementation of threads varies among operating systems, but
most thread implementations share the following characteristics:

• Shared address space

The threads share an address space (memory) with other threads. They can
read and write the same variables and can execute the same code.

• Private execution context

Each thread has its own set of general-purpose registers and floating-point
registers (if applicable to the processor).
TotalView User’s Guide 13

CHAPTER 1: Introduction
• Private execution stack

Each thread has a region of address space reserved for its execution stack.
This is typically a range of addresses in the address space reserved for the
thread’s stack. However, one thread’s stack can be read and written by other
threads sharing the address space.

• Thread private data

Some operating systems (not all) allow a program to “declare” thread private
data. A program variable that is declared thread private provides each thread
its own copy of the variable. Changes to the variable by one thread are not
seen by the others. This facility usually requires compiler and linker support,
in addition to operating system support.

TotalView supports debugging threaded applications on a variety of operating
systems. On most versions of UNIX operating systems that support threads, a
process consists of an address space and a list of one or more threads. Other
operating systems that TotalView supports implement tasks or threads running in
the memory space of a computer, and have no facilities for multiple processes or
address spaces on a single machine.

To handle this diversity, TotalView implements a general model of address spaces
and execution contexts. For conciseness, we use the term thread to mean a thread
or task with an execution context, and process to mean an address space or
computer memory that is capable of running one or more threads.

See “Navigating in the Process Window” on page 24 and “Determining the Status
of Processes and Threads” on page 44 to learn how TotalView presents information
about threads.

Context-Sensitive Help

You can request help from every window in the TotalView debugger. The Help
command displays context-sensitive information about the window or dialog box
you are currently working in or the debugging operation you are currently using.
The debugger displays the information in a separate help window, so you can scroll
through the information as you debug your program. As you make successive help
requests, the debugger displays the new information in the help window. See
“Getting Help” on page 19.
14 TotalView User’s Guide

1

CHAPTER 2:

TotalView Basics
This chapter introduces you to the TotalView interface. You’ll learn how to:

• Compile your program

• Start TotalView

• Use the mouse buttons and menus

• Get online help

• Use the primary windows

• Scroll windows and fields

• Dive into objects

• Edit text

• Search for text strings

• Use the spelling corrector

• Save the contents of windows

• Exit TotalView
TotalView User’s Guide 15

CHAPTER 2: TotalView Basics
Compiling Programs

Before you start TotalView, compile your source code with the –g compiler switch,
which generates debugging information in the symbol table. For example:

% cc –g program –o executable

For more information on compiling your program for TotalView, see “Compiling
Programs” on page 36. On some platforms, additional compiler switches may be
necessary or recommended for effective debugging. For more information, refer
to Appendix A, ”Compilers and Environments,” on page 303.

If necessary, you can debug programs that have not been compiled with the –g
compiler switch or programs for which you do not have the source code. For more
information, refer to “Examining Source and Assembler Code” on page 120.

Starting TotalView

Depending on the kind of program you are debugging, there are several way to
start TotalView. In its simplest form, use the totalview command with the name
of your program (filename):

% totalview filename

For more information on starting TotalView, see “Starting the TotalView
Debugger” on page 37.

For information on starting TotalView on a parallel debugging session, Chapter 5,
“Setting Up Parallel Debugging Sessions,” on page 75.

For more information on the totalview command, command options, and command
syntax, refer to Chapter 12, “TotalView Command Syntax,” on page 287.
16 TotalView User’s Guide

Using the Mouse Buttons
Using the Mouse Buttons

The TotalView debugger supports a three-button mouse, as outlined in Table 1.

In the tag field area (See Figure 7 on page 21 for an example of the tag field) of
the source code pane, the select button has a special function. By selecting the line
number of an executable line of code, you set a breakpoint at that line. TotalView
displays a STOP sign in the tag field.

Selecting the STOP sign clears (deletes) the breakpoint. If an evaluation point has
been set (indicated by an EVAL sign), selecting the sign disables it. For more
information on breakpoints and evaluation points, refer to Chapter 8, “Setting
Action Points,” on page 187.

Table 1. Mouse Button Functions

Button
Default
Position Purpose How to Use It

Select Left Select or edit object,
scroll in windows and
panes

Move the pointer over the object and
click the button.

Menu Middle Display pop-up menu Move the pointer into the window
and hold down the button.

Select command from
menu

Move pointer down the menu until
the desired command is highlighted,
and release the button.

Leave menu without
selecting command

Move the pointer off the menu and
release the button.

Dive Right Dive into object to
display information
about it

Move the pointer over the object and
click the button.
TotalView User’s Guide 17

CHAPTER 2: TotalView Basics
Using Menu and Keyboard Commands

Each TotalView window provides a pop-up menu of commands for examining and
manipulating the information displayed in a window. Figure 5 shows an example
of the process window menu and a submenu. To display a pop-up menu in the
current window, click the middle mouse button.

Many commands have keyboard shortcut (accelerator) keys that are shown in
parentheses in this manual. For example, typing the letter q into the window issues
the Close Window (q) command. The keyboard shortcuts are listed on the menu
to the right of the menu command.

Items that appear dimmed on the menu are commands that are currently disabled.

Figure 5. Example TotalView Menu and Submenu

Pop-up menu

Submenu

Commands

Submenu indicator

Keyboard commands (shortcuts)
18 TotalView User’s Guide

Getting Help
The following commands are only available from the keyboard:

Control-C Cancels the single-step operation and other time-
consuming operations, such as searching for a string.

Control-L Refreshes the current window.

Control-Q Exits from the debugger after you confirm.

Control-R Raises the root window.

Shift-Return Exits from the field editor that lets you to edit text in
Totalview windows.

Getting Help

You can request help from any TotalView window or dialog box by selecting the
Help command from the pop-up menu or by pressing Control-?. When you request
help, a separate help window appears. To close the help window, select the Close
Window (q) command from the menu.
TotalView User’s Guide 19

CHAPTER 2: TotalView Basics
Using the Primary Windows

When you start the TotalView debugger with the name of program to debug, two
windows appear:

• The root window displays a list of all the processes that you are debugging,
and optionally a list of thread for each process. Until you start a process, the
root window lists only the name of the program with which you started
TotalView.

• The process window displays the thread list, action point list, and the selected
thread of a particular process that you are debugging. The process window
also displays the source code, stack frame, and stack trace of the selected
thread in that process. Until you start the process, the process window displays
only the source code for the program.

Figure 6 and Figure 7 show the root and process windows.

Figure 6. Root Window

Program name

TotalView version number

Target system

Process ID (pid)

Thread list

Thread ID (tid/systid)

Process status

Action point ID
Thread status

Collapse/Expand toggle

Remote process
location
20 TotalView User’s Guide

Using the Primary Windows
Starting A
Process

To start a process:

1. Move your cursor to the process window.

2. Set a breakpoint in the source code by selecting a boxed line number.

3. Type the keyboard accelerator g (for the Go Process command). The process
starts running and then stops at the breakpoint you set.

Figure 7. Process Window

Process status

Action points pane
Thread list pane

Tag field area

Current PC

Selected thread

Stack frame pane

Source code pane

Thread status
Stack trace pane

Language of
routine

Navigation controls

Selected frame

Process ID (pid)
Process and thread ID (pid.tid)

Thread count
TotalView User’s Guide 21

CHAPTER 2: TotalView Basics
When you are debugging a remote process the abbreviated hostname on which the
process is running appears in square brackets in the root window, and the full
hostname appears in square brackets in the title bar of the process window. For
example, in Figure 7, the process running txsort_t is on the machine
rgreen-loaner.dolphinics.com, which is abbreviated to [rgreen-l*] in the root
window. In the process window, the full hostname of the process
[rgreen-loaner.dolphinics.com] is displayed.

As you examine the process window in Figure 7, notice the following:

• The thread list pane shows the list of threads that currently exist in the process.
The number in the thread list pane title is the count of the number of threads
that currently exist in the process. When you select a different thread in the
thread list, TotalView updates the stack trace pane, stack frame pane, and
source code pane to show you the information for that thread. When you dive
on a different thread in the thread list, TotalView finds or opens a new window
displaying information for that thread. Holding down the Shift key when you
dive will force TotalView to open a new process window focused on that
thread.

• The thread ID shown in the root window and thread list pane of the process
window is in the format tid/systid. tid is the TotalView assigned logical thread
ID and systid is the system assigned thread ID. On systems such as Digital
UNIX, where the tid and systid values are the same, TotalView displays only
the tid value.

• In other windows, TotalView uses pid.tid to identify threads within a process.

• The stack trace pane shows the call stack of routines that are executed by the
selected thread. You can move up and down the call stack by selecting the
desired routine (stack frame). When you select a different stack frame in the
call stack, TotalView updates the stack frame pane and source code pane to
show the information about the selected routine.

• The stack frame pane displays all the function parameters, local variables,
and registers for the selected stack frame.

• The information displayed in the stack trace and stack frame panes reflects
the state of the process when it was last stopped. Therefore, the stack trace
and stack frame panes are not current while the thread is running.

• In the left margin of the source code pane, the tag field area contains line
numbers opposite all lines of source code. You can place a breakpoint at any
line of source code that generated object code, which is indicated by a boxed
line number. The arrow in the tag field indicates the current location of the
22 TotalView User’s Guide

Using the Primary Windows
program counter (PC) for the selected stack frame. See Figure 8 for more
information.

• In a multiprocess or multithreaded program, each thread has its own point of
execution, so the program counter arrow points to a unique program counter
(PC) in each process window for a particular thread. Therefore, when you
stop a multiprocess or multithreaded program, the routine selected in the stack
trace pane for a particular thread depends on the PC for the thread. At the
time you stop the program, some threads might be executing in one routine,
while others might be executing in other routines.

• The action points list pane shows the list of breakpoints and evaluation points
for the process.

• The navigation control buttons in the upper right-hand corner of the process
window allow you to easily navigate through the processes and threads you
are debugging.

Sizing Process
Window Panes

You can change the size the panes in the process window. If you do not want to
see a particular pane, you can size the pane to a zero size. To do so:

1. Move the mouse cursor over the edge of the window pane until the cursor
with crossed arrows appears, as shown in Figure 9:

2. Hold down the left mouse button and drag the edge until the pane is the desired
size.

Figure 8. Program Counter

Tag field

Program counter arrow

Figure 9. The Sizing Cursor
TotalView User’s Guide 23

CHAPTER 2: TotalView Basics
Navigating in
the Process
Window

The navigation control buttons, located in the upper right corner of the process
window, allow you to easily navigate through the processes and threads you are
debugging. Using these buttons you can:

• Move up and down the list of processes you are debugging

• Move up and down the list of threads in a particular process

• Go back to the previous contents of the process window

Figure 10 shows the navigation controls available in the process window.

Navigating in
the Root
Window

You can also navigate through the processes and threads you are debugging from
the root window. In general, selecting a process or thread with the left mouse button
will not open a new window. Selecting tries to minimize the number of open process
windows. However, diving on a process or thread with the right mouse button will
open a new process window if an exactly matching process/thread combination
could not be found. Finally, holding down the Shift key when you dive always
opens a new window.

• When you select a process in the root window, TotalView finds or opens a
process window for that process. If a matching window can’t be found, it will
replace the contents of an existing process window and show you the selected
process.

• When you dive on a process in the root window, TotalView finds or opens a
process window for that process. Holding down the Shift key when you dive
will force TotalView to open a new process window focused on that process

Figure 10. Process Window Navigation Controls

Go back button

Previous process button

Next process button

Next thread button

Previous thread button
24 TotalView User’s Guide

Scrolling Windows and Fields
• When you select a thread in the root window, TotalView finds or opens a
process window for that process and show you the selected thread. If a
matching window can’t be found, it will replace the contents of an existing
process window and show you the selected thread.

• When you dive on a thread in the root window, TotalView finds or opens a
process window for that process and thread combination. Holding down the
Shift key when you dive will force TotalView to open a new process window
focused on that thread.

The Process
Window Stack

Whenever the process and/or thread is replaced in the process window, the previous
contents of the window are pushed onto a stack. The go back button pops the stack
and shows you the previous contents of the process window. The process window
stack is pushed in the following cases:

• Select or dive in the thread list pane in the process window

• Select or dive on any of the four process/thread previous/next buttons in the
process window

• A select operation in the root window on a process or thread that causes the
contents of a process window to be replaced with the selected process or
thread.

Scrolling Windows and Fields

Scrolling
Windows

You can use the scroll bars to scroll through the information in TotalView windows
and panes, as shown in Figure 11.

• To scroll one line at a time, click the Select mouse button on the up or down
arrows (at the top and bottom of the scroll bar).

• To scroll one page at a time, click the Select mouse button above or below
the elevator box inside the scroll bar.

• To scroll an arbitrary amount, hold down the Select mouse button and drag
the elevator box inside the scroll bar.
TotalView User’s Guide 25

CHAPTER 2: TotalView Basics
To scroll continuously by line or by page, you can hold down the Select mouse
button instead of clicking it. If TotalView scrolls too fast or too slow, you can
adjust the scrolling speed using X resources. Refer to “totalview*scrollLineSpeed:
n” on page 276 for further information.

You can also scroll windows using the keys on your keyboard’s numeric keypad:

↑ Scrolls up one line.

Meta-↑ Scrolls up one page.

↓ Scrolls down one line.

Meta-↓ Scrolls down one page.

Page up Scrolls up one page.

Page down Scrolls down one page.

On some platforms, you may need to adjust your X Window System keyboard
mapping to use certain keys on the numeric keypad. Refer to Appendix B,
”Operating Systems,” on page 321 for details.

Figure 11. Scroll Bar

Up arrow

Page-up region

Elevator box

Page-down region

Down arrow
26 TotalView User’s Guide

Scrolling Windows and Fields
Scrolling
Multiline Fields

You can scroll multiline fields in dialog boxes, which allows you to create more
lines than are visible. The bottom left corner of the multiline field indicates your
location in the field with the following symbols:

• All – All of the lines in the field are visible.

• Top – The top line of the field is visible, but there are more lines below the
bottom of the field that are not visible.

• Bot – The bottom line of the field is visible, but there are more lines above
the top of the field that are not visible.

• nn% – The percentage of the lines above the top of the field that are not
visible.

Figure 12 shows an example of a scrollable multiline field.

You can use the ↑ key or Control-P to move up a line in a multiline field. You
can also use the ↓ key or Control-N to move down a line in a multiline field. When
you move off the top or bottom of the field and there are more lines above or below,
the field scrolls automatically by one line.

You can scroll a multiline field by more than one line at a time by combining
Control-U with any of the other commands for moving up or down a line. When
you precede an editing command with Control-U, it repeats the command four
times. For example, if you enter Control-U Control-P, the cursor moves up four
lines.

Figure 12. Scrollable Multiline Field
TotalView User’s Guide 27

CHAPTER 2: TotalView Basics
Diving into Objects

To display more detail about an object (for example, a variable), dive into it by
clicking the Dive mouse button. You can dive into any object that has a block of
data associated with it, such as a pointer, structure, or subroutine. TotalView
displays the information about the object in the current window or in a separate
window, as outlined in Table 2.

1. A subroutine must be compiled with source line information
(usually, with the –g switch) for you to dive into it and see source code.
If the subroutine was not compiled with source line information, the
debugger displays the assembler code for the routine.

For additional information about displaying variable contents, refer to “Diving in
Variable Windows” on page 152.

Table 2. Uses for Diving

Object Information Displayed by Diving

Process or thread A process window appears focused on
a thread. See “Using the Primary
Windows” on page 20.

Routine in the stack trace
pane

The stack frame and source code for
the routine appear in the process
window.

Pointer The referenced memory area appears
in a separate variable window.

Variable The contents of the variable appears
in a separate variable window.

Array element, structure
element, or referenced
memory area

The contents of the element or
memory area replaces the contents
that was in the variable window. This
is known as a nested dive.

Subroutine1 The source code for the subroutine
appears in the process window.
28 TotalView User’s Guide

Editing Text
Editing Text

To change the values of fields in TotalView windows, or to change text fields in
dialogs, you can use the field editor, which has basic text editing capabilities. To
edit text:

1. Click the left mouse button to select the text to change.

2. If you can edit the selected text, it is enclosed in a rectangle, and the editing
cursor (a black rectangle) appears, as shown in Figure 13.

3. Edit the text and press Return (for single-line fields) or Shift-Return (for
multiline fields).

You can copy and paste text within TotalView windows, between TotalView
windows, or between TotalView windows and other X Window System windows.

To copy and paste text between an editable field in TotalView and other X windows
applications, do the following:

1. Copy text into the cut buffer with one of the following:

• Click and hold the left mouse button at one end of the range, drag the
cursor to the other end of the range, then let go of the mouse button; or

• Click the left mouse button at one end of the range then click right mouse
button at the other end of the range

TotalView highlights the text while you hold the mouse button down. When
you release the mouse button, the highlight disappears indicating TotalView
copied the text into the cut buffer.

2. Move the cursor to the place you want to paste the text, then do one of the
following:

Figure 13. Editing Cursor

Selection box
Editing cursor
TotalView User’s Guide 29

CHAPTER 2: TotalView Basics
• Press Control middle mouse button; or

• Press the middle mouse button for a menu. Select Paste (Control-V)
from the menu.

The field editor supports some of the same commands as GNU Emacs, as outlined
in Table 3.

Note: The preceding steps apply to copy and paste operations for
TotalView windows only, not to other X Window System
clients.

Table 3. Field Editor Commands

Keystrokes Action

Control-A Move the cursor to the beginning of the line.

Control-B Move the cursor backward one character.

Control-C Abort the field editor, and discard all changes.

Control-D Delete the character under the cursor.

Control-E Move the cursor to the end of the line.

Control-F Move the cursor forward one character.

Control-H, Backspace,
or Delete

Delete the previous character.

Control-K Delete all text to the end of the line, or delete a newline.

Control-N Move the cursor to the next line (in fields with multiple lines only).

Control-O Insert a newline (in fields with multiple lines only).

Control-P Move the cursor to the previous line (in fields with multiple lines
only).

Control-U [n] Multiply the number of times the command is executed by n. n is
optional; the default is 4. Issue this command in combination with
another command. For example, to move the cursor forward 50
characters, you enter: Control-U 50 Control-F.
30 TotalView User’s Guide

Searching for Text
Searching for Text

You can search for text strings in most TotalView windows. You can use the
following commands:

Search for String(/) Searches forward in the window for a text
string. The debugger prompts you for the
string. The search starts from the first line of
text that is visible in the window.

Search Backward for String (\) Searches backward in the window for a text
string. The search starts from the last line of
text that is visible in the window.

Reexecute Last Search (.) Repeats the last forward or backward search
without prompting for a string. The search
starts from the point where the last search left
off and continues in the same direction.

Control-V Paste text from X windows copy buffer.

Tab Space over to the next tab stop. (Tab stops are located every four
characters.)

Return For single-line fields, stop the field editor and deselect the field. In
dialog boxes, confirm the dialog box as if the OK, Continue or Yes
button was selected.
For multi-line fields, insert a newline.

Shift-Return For both single-line and multi-line fields, stop the field editor and
deselect the field. In dialog boxes, confirm the dialog box as if the
OK, Continue or Yes button was selected.

↑ , ↓ , ←, → Move up, down, backward, and forward one character.

Table 3. Field Editor Commands (Continued)

Keystrokes Action
TotalView User’s Guide 31

CHAPTER 2: TotalView Basics
Using the Spelling Corrector

TotalView checks the spelling of text entries for certain commands. If TotalView
does not find the name you entered, it displays a dialog box with the closest match,
as shown in Figure 14.

You can edit the closest match, and then select OK to use it, Original to get back
the original text, or Abort to cancel.

To customize the behavior of the spelling corrector with X Window System
resources, refer to “totalview*spellCorrection: {verbose | brief | none}” on
page 280.

Saving the Contents of Windows

You can save the contents of most window panes as ASCII text. You can save the
contents in the following ways:

• Write it to a file. When you specify filename, TotalView creates the file (if
it does not exist) and overwrites its contents with the text.

• Append it to a file. When you specify +filename, TotalView creates the file
(if it does not exist) and appends the text to the end of it.

• Pipe it to UNIX shell commands. When you specify |command, TotalView
pipes the commands to /bin/sh for execution. You can use a series of complex
shell commands if desired. For example, to ignore the top five lines of output,

Figure 14. Dialog Box for Spelling Corrector
32 TotalView User’s Guide

Exiting from the TotalView Debugger
compare the current ASCII text to an existing file, and write the differences
to another file, you specify:

|tail +5 | diff – filename > filename.diff

To save the contents of the current window pane:

1. Move the mouse pointer into the desired pane.

2. Select the Save Window to File command.

3. Enter filename, +filename, or |command in the dialog box.

4. Press Return.

To save a series of panes in a window, you can use the Reexecute Last Save
Window command. This command repeats the last Save Window to File
command (including the information entered in the dialog box) but for the current
window pane.

Exiting from the TotalView Debugger

You can exit from the debugger in two different ways:

• Press Control-Q in any window.

• Select the Quit Debugger (q) command in the root window.

In the dialog box, select Yes or type y to confirm. To cancel the exit, select No or
type n.
TotalView User’s Guide 33

CHAPTER 2: TotalView Basics
34 TotalView User’s Guide

2

CHAPTER 3:

Setting Up a Debugging Session
This chapter explains how to set up basic TotalView sessions. It also describes
how to implement some common commands and procedures. For information on
setting up remote debugging sessions, see Chapter 4, “Setting Up Remote
Debugging Sessions,” on page 59. For information on setting up parallel debugging
sessions, see Chapter 5, “Setting Up Parallel Debugging Sessions,” on page 75.

In this chapter, you will learn how to:

• Compile programs

• Start TotalView

• Load executables

• Attach to and detach from processes

• Examine core files

• Determine the status of processes and threads

• Handle signals

• Set search paths

• Set command arguments and environment variables

• Set input and output files

• Monitor your TotalView session
TotalView User’s Guide 35

CHAPTER 3: Setting Up a Debugging Session
Compiling Programs

Before you start to debug a program with the TotalView debugger, you must
compile the program with the appropriate switches and libraries for your situation.
Table 4 discusses some general considerations, but you must check Appendix A,
“Compilers and Environments,” on page 303 to determine the exact syntax and
any other considerations for your platform. For additional information on how to
compile a Portland Group HPF program for debugging, see “Compiling HPF for
Debugging” on page 106.

1. Some compilers don’t permit you to use the –O switch simultaneously with the –g switch. Even if
your compiler does permit this, we recommend against it. Although you can do some debugging with
the –O option on, your debugging session may produce strange results.

2. The TotalView dbfork library is distributed as two separate libraries on IRIX6 MIPS. Use the
libdfork_n32.a library to link to –n32 compiled executables. Use the libdbfork_n64.a library to link
to –64 executables.

3. Refer to “Processes That Call fork()” on page 199 and “Processes That Call execve()” on page 199.

Table 4. Compiler Considerations

Compiler Switch or Library What It Does When to Use It

Debugging symbols switch
(usually –g)

Generates debugging
information in the symbol
table

Before debugging any
program with TotalView

Optimization switch (usually
–O)

Moves code around to
optimize execution of
program 1

After you finish debugging
your program with TotalView

Multiprocess programming
library (usually dbfork) 2

Uses special versions of the
fork() and execve() system
calls

Before debugging a
multiprocess program that
explicitly calls fork() or
execve() 3
36 TotalView User’s Guide

Starting the TotalView Debugger
Starting the TotalView Debugger

The complete command syntax for starting the TotalView debugger is as follows:

% totalview [filename [corefile]] [options]

where filename specifies the name of the executable file to be debugged and corefile
specifies the name of the core file to be debugged.

Here are some of the most common ways of starting the debugger:

totalview Starts the debugger without loading a program
or core file. Once in TotalView, you can load
a program by issuing the New Program
Window (n) command from the root window.

totalview filename Starts the debugger and loads the program
specified by filename.

totalview filename corefile Starts the debugger and loads the program
specified by filename and the core file
specified by corefile.

totalview filename –a args Starts the debugger and passes all subsequent
arguments (specified by args) to the program
specified by filename. The –a option must
appear after all other TotalView options on
the command line.

totalview filename –grab Starts the debugger and grabs the keyboard
whenever it displays a dialog box. You should
use this option whenever you start TotalView
with a window manager that uses a “click-to-
type” model.

totalview filename –remote hostname[:portnumber]
Starts TotalView on the local host and the
TotalView Debugger Server (tvdsvr) on the
remote host hostname. Loads the program
specified by filename for remote debugging.
You can specify a host name or TCP/IP
address for hostname, and optionally, a
TCP/IP port number for portnumber.
TotalView User’s Guide 37

CHAPTER 3: Setting Up a Debugging Session
For more information on:

• debugging parallel programs such as MPI, PVM, or HPF, refer to Chapter 5,
“Setting Up Parallel Debugging Sessions,” on page 75.

• the totalview command, refer to Chapter 12, “TotalView Command Syntax,”
on page 287;

• remote debugging, refer to “Debugging Remote Processes” on page 60,
“Starting the Debugger Server for Remote Debugging” on page 64, and
Chapter 13, “TotalView Debugger Server Command Syntax,” on page 299;

Loading Executables

Loading a New
Executable

If you did not load an executable when starting TotalView, you can load one at
any time using the New Program Window command. To do so, do the following:

1. From the root window, select the New Program Window (n) command. A
dialog box appears, as shown in Figure 15.

Figure 15. New Program Window Dialog Box
38 TotalView User’s Guide

Loading Executables
2. Enter the name of the executable in the top section of the dialog box. The
name can be a full or relative pathname.

If you supply a simple filename, TotalView searches for it in the list of
directories specified with the Set Search Directory command and specified
by your PATH environment variable.

3. (Optional) If you prefer to create a brand new process instead of reusing an
existing one (the default), select the Create a new process window radio
button.When you select this option, TotalView creates a new entry in the root
window for the process

4. Press Return.

Reloading a
Recompiled
Executable

If you have edited and recompiled your program during a debugging session, you
can reload your updated program without exiting from the debugger. To do so:

1. Confirm that all processes using the executable have exited. If they have not,
display the Arguments/Create/Signal submenu and select the Delete
Program (^Z) command from the process window.

2. Confirm that duplicate copies of the process do not exist by issuing the ps
command in a shell. If duplicate processes exist, delete them with the kill
command.

3. Recompile your program.

4. In the process window, display the Arguments/Create/Signal submenu and
select the Reload Executable File command. The debugger updates the
process window with the new source file and loads a new executable file.
The next time you start the process, the debugger uses the new executable file.

Note: If you use the New Program Window command to load the
same executable again, TotalView does not reread the
executable, and it reuses the existing symbol table. To have
TotalView reread the executable, you need to use the Reload
Executable File command, as described in the next section.
TotalView User’s Guide 39

CHAPTER 3: Setting Up a Debugging Session
Attaching to Processes

If a program you are testing is hung or looping (or misbehaving in some other
way), you can attach to it with TotalView. You can attach to single processes,
multiprocess programs, and remote processes.

To attach to a process, you can either use the Show All Unattached Processes (N)
or New Program Window (n) commands.

Attaching Using
Show All
Unattached
Processes

To attach to a process using the Show All Unattached Processes (N) command,
go to the root window and complete the following steps:

1. Select the Show All Unattached Processes (N) command.

The unattached processes window appears, as shown in Figure 16. This
window lists the process ID, status, and name of each process associated with
your username. The processes that appear dimmed are those that are already
being debugged by the debugger, or those that TotalView will not allow you
to debug (e.g., the TotalView process itself).

Note: If the process or any of its children has called the execve()
routine, you may need to attach to it by creating a new
program window. The reason for this is that on some
platforms TotalView uses the ps command to obtain the name
of the executable file for the process. Since ps can give
incorrect names, TotalView might not be able to find the
executable for the process.
40 TotalView User’s Guide

Attaching to Processes
If you are debugging a remote process in this session, the unattached
processes window also shows processes running under your username on
each remote host name. You can attach to any remote process listed. For more
information on remote debugging, refer to “Starting the Debugger Server for
Remote Debugging” on page 64 and Chapter 13, “TotalView Debugger
Server Command Syntax,” on page 299.

2. Dive into the process you wish to debug.

A process window appears. The right arrow points to the current program
counter (PC) The PC indicates where the program is either executing or hung.

Figure 16. Unattached Processes Window

Remote
processes

Local
processes
TotalView User’s Guide 41

CHAPTER 3: Setting Up a Debugging Session
Attaching Using
New Program
Window

To attach to a process with the New Program Window (n) command, follow these
steps:

1. Get the process ID (PID) of the process by using the ps command in a shell.

2. Issue the New Program Window (n) command from the root window. A
dialog box appears, as shown in Figure 17.

3. Enter the name of the executable in the top section of the dialog box. The
name can be a full or relative pathname. If you supply a simple filename,
TotalView searches for it in the list of directories specified with the Set
Search Directory command and specified by your PATH environment
variable.

4. Enter the process ID (PID) of the unattached process in the middle section
of the dialog box.

5. Press Return.

If the executable is a multiprocess program, the debugger asks you if you
want to attach to all relatives of the process. If you want to examine all
processes, select Yes.

Figure 17. New Program Window Dialog Box
42 TotalView User’s Guide

Detaching from Processes
If the process has children that called execve(), the debugger tries to determine
the correct executable for each of them. If the debugger cannot determine the
executables for the children, you need to delete (kill) the parent process and
start it again using TotalView.

Finally, a process window appears. The right arrow points to the current
program counter (PC). This is where the program is either executing or hung.

Detaching from Processes

You can detach from any processes to which you have attached (that is, processes
that TotalView did not create) when you finish debugging them. When you detach
from a process, TotalView removes all breakpoints that you set in that process.

To detach from a process:

1. If you want to send the process a signal, select the Set Continuation Signal
command. Choose the signal that TotalView should send to the process when
it detaches from it. For example, to detach from a process and leave it stopped,
set the continuation signal to SIGSTOP.

2. Display the Arguments/Create/Signal submenu and select the Detach from
Process command.

Examining a Core File

If a process encounters a serious error and dumps a core file, you can examine it
from the debugger. TotalView provides two different methods for examining a
core file:

• You can start the TotalView debugger with the following command:

% totalview filename corefile [options]

where corefile is the name of the core file.
TotalView User’s Guide 43

CHAPTER 3: Setting Up a Debugging Session
• You can issue the New Program Window (n) command from the root
window. In the dialog box, enter the name of the core file in the middle section
of the dialog, select the Core file radio button, and press Return.

The process window displays the core file, with the stack trace, stack frame, and
source code panes showing the state of the process when it dumped core. The title
bar of the process window specifies the signal that caused the core dump. The right
arrow in the tag field of the source code pane indicates the value of the program
counter (PC) when the process encountered the error.

You can examine all of the variables to see their state at the time the process found
the error. For more information on examining variables, refer to Chapter 7,
“Examining and Changing Data,” on page 147.

If you start a process while you are examining a core file, the debugger stops using
the core file and starts a fresh process with the executable.

Determining the Status of Processes and
Threads

Process and thread states are displayed in:

• The root window, for processes and threads

• The unattached processes window, for processes

• The process and thread status bars of the process window, for processes and
threads

• The thread list pane of the process window, for threads

Note: You can debug only local core files. TotalView does not
support remote debugging of core files.
44 TotalView User’s Guide

Determining the Status of Processes and Threads
Process Status The status of a process includes three things: the process location, the process ID,
and the state of the process. The root window displays a single character to identify
the state of a process. The process status in the root window takes the following
form:

[L] N S process_name

where [L] is the process location (present only for remote processes), N is the
process ID, S is the single-character representation of the process state, and
process_name is TotalView’s name for the process.

The unattached processes window lists all processes that are associated with your
username. The format of the information in the unattached process window is
similar to the format of processes in the root window. Process states are specified
with a single character. Processes which you are debugging in your TotalView
session are dimmed out.

The process status bar of the process window displays information in the following
format:

Process [L] N: process_name (state)

where [L] is the process location (present only for remote processes), N is the
process ID, process_name is TotalView’s name for the process, and state is the
state name of the process based on the state of its threads.

Thread Status The root window displays a single character to identify the state of a thread. The
thread status in the root window takes the following form:

T/X S in routine_name

where T is the TotalView assigned thread ID, X is the system assigned thread ID,
and S is the single-character representation of the thread state, and routine_name
is the name of the routine in which the thread was executing when last stopped by
TotalView. On systems for which the TotalView-assigned thread ID and the
system-assigned thread ID are the same, TotalView displays only one ID value.
See Figure 18.
TotalView User’s Guide 45

CHAPTER 3: Setting Up a Debugging Session
The thread list pane in the process window uses the same thread status format as
the root window.

The thread status bar of the process window displays information in the following
format:

Thread N.T: process_name (state) <reason>

where N is the process ID, T is the TotalView assigned thread ID, process_name
is TotalView’s name for the process, state is the state name of the thread, and
<reason> is the reason the thread stopped.

Unattached
Process States

The state information for a process displayed in the unattached processes window
is derived from the system. The state characters TotalView uses to summarize the
state of an unattached process do not necessarily match those used by the system.

Figure 18. Root Window Showing Process and Thread Status

Program name

Process status

Remote process
location

Process ID (pid)

Thread ID (tid/systid)

Thread status

TotalView version number

Target system

Collapse/Expand toggle

Thread list

Action point ID number
46 TotalView User’s Guide

Determining the Status of Processes and Threads
Table 5 summarizes the possible states in the unattached processes window.

Attached
Process States

The state of processes and threads that TotalView is attached to is displayed in
various windows.

Table 6 summarizes the possible states for an attached process or thread, and how
the states are displayed.

Table 5. Summary of Unattached Process States

State
State
Character Meaning for a process

Running R Process is running or can run.

Stopped T Process is stopped.

Idle I Process has been idle or sleeping for more than 20 seconds.

Sleeping S Process has been idle or sleeping for less than 20 seconds.

Zombie Z Process is a “zombie,” a child process that has terminated
and is waiting for its parent process to gather its status.

Table 6. Summary of Attached Process and Thread States

State Name
State
Character Meaning for a thread and process

Exited or never created Blank Process only: does not exist.

Running R Thread: is running or can run.
Process: all threads in the process are running or can
run.

Mixed M Process only: some threads in the process are running
and some are not running. Or the process is expecting
some of its threads to stop.

Error <reason> E Thread: is stopped because of error reason.
Process: one or more threads are in the Error state.
TotalView User’s Guide 47

CHAPTER 3: Setting Up a Debugging Session
The Error state usually indicates that your program received a fatal signal from
the operating system. Some signals, such as SIGSEGV, SIGBUS, and SIGFPE
may indicate an error in your program. You can control how TotalView handles
signals your program receives.

Handling Signals

If your program contains a signal handler routine, you might need to adjust the
way the debugger handles signals. You can change the way in which TotalView
handles signals by using a dialog box (described in this section), an X resource
(see “totalview*signalHandlingMode: action_list” on page 278), or a command-
line option to the totalview command (refer to “TotalView Command Syntax” on
page 287).

At Breakpoint B Thread: stopped at a breakpoint.
Process: one or more threads are stopped at a
breakpoint, but none are in the Error state.

Stopped <reason> T Thread: stopped because of reason, but not at a
breakpoint and not because of an error.
Process: one or more threads are stopped, but none
are in the At Breakpoint state and none are in the
Error state.

In Kernel K Thread only: the thread is executing inside the kernel
(that is, made a system call). When a thread is in the
kernel the operating system does not allow the
debugger to view the full state of the thread.

Table 6. Summary of Attached Process and Thread States (Continued)

State Name
State
Character Meaning for a thread and process
48 TotalView User’s Guide

Handling Signals
By default, TotalView handles UNIX signals as outlined in Table 7.

Some hardware registers can affect how signals are handled on your platform, such
as the SIGFPE signal and others. For more information, refer to “Interpreting Status
and Control Registers” on page 124 and Appendix C, “Architectures,” on page 333.

Table 7. Default Signal Handling Behavior

Signals that are Passed Back to
Your Program

Signals that Stop Your
Program or Cause an Error

SIGHUP
SIGINT
SIGQUIT
SIGKILL
SIGALRM
SIGURG
SIGCONT
SIGCHLD
SIGIO
SIGVTALRM
SIGPROF
SIGWINCH
SIGLOST
SIGUSR1
SIGUSR2

SIGILL
SIGTRAP
SIGIOT
SIGEMT
SIGFPE
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE
SIGTERM
SIGTSTP
SIGTTIN
SIGTTOU
SIGXCPU
SIGXFSZ

Note: The SIGTRAP and SIGSTOP signals are used internally by
the TotalView debugger. If the process encounters any of
these signals, TotalView neither stops the process with an
error nor passes the signal back to your program. Further, you
cannot alter the way the debugger uses these signals.
TotalView User’s Guide 49

CHAPTER 3: Setting Up a Debugging Session
If the TotalView debugger’s defaults are not satisfactory, you can change the signal
handling mode. To do so, go to the process window and complete the following
steps:

1. Display the Arguments/Create/Signal submenu and select the Set Signal
Handling Mode... command. A dialog box appears, as shown in Figure 19.

2. By default, when your program encounters an error signal, TotalView stops
all related processes. If you do not want this behavior, deselect the Stop
related processes on error checkbox.

3. By default, when your program encounters an error signal, TotalView opens
or raises the process window. If you do not want this behavior, deselect the
Open (or raise) process window on error checkbox. You can change the
default setting of this checkbox using an X resource (“totalview*popOnError:
{on | off}” on page 275) or a command line option.

Figure 19. Dialog Box for Set Signal Handling Mode Command

Note: The set of signal names and numbers shown in the dialog box
are platform-specific. The dialog box displayed on your
platform may have additional signals and different signal
numbers.
50 TotalView User’s Guide

Handling Signals
4. If you select the Open (or raise) process window at breakpoint checkbox,
TotalView will open or raise the process window when your program
encounters a breakpoint. If you want this behavior by default, you can change
the default setting of this checkbox using an X resource
(“totalview*popAtBreakpoint: {on | off}” on page 275) or a command line
option

5. Scroll the signal list to the desired signal.

6. For each signal listed in the dialog box, choose one of the following signal
handing modes by selecting its radio button:

Error Stops the process, places it in the error state, and
displays an error in the title bar of the process window.
If the Stop related processes on error checkbox is
selected, the debugger also stops all related processes.
You should select this signal handling mode for severe
error conditions, such as SIGSEGV and SIGBUS
signals.

Stop Stops the process and places it in the stopped state.
Select this signal handling mode if you want the signal
to be handled like the SIGSTOP signal.

Resend Sends the signal to the process. If your program
contains a signal handling routine, you should use this
mode for all the signals that it handles. By default, the
common signals for terminating a process (SIGKILL
and SIGHUP) use this mode.

Discard Discards the signal and restarts the process without a
signal.

Note: If the processes in a multiprocess program encounter an error,
the debugger automatically opens a process window for only
the first process that encounters an error. Thus, if your
program has many processes, this feature prevents the screen
from filling up with process windows.

Note: Don’t use Discard mode for fatal signals, such as SIGSEGV
and SIGBUS. If you do, the debugger can get caught in a
signal/resignal loop with your program, with the signal
immediately recurring because of repeated reexecution of the
failing instruction.
TotalView User’s Guide 51

CHAPTER 3: Setting Up a Debugging Session
7. Select OK to confirm your changes, Abort to cancel the changes, or Defaults
to return to the default mode settings.

Setting Search Paths

If your source code, executable or object files reside in a number of different
directories, you can set search paths in the debugger for these directories with the
Set Search Directory command. By default, the debugger searches the following
directories (in order) for source code:

1. The current working directory (.).

2. The directories you specify with the Set Search Directory command, in the
exact order you enter them in the dialog box.

3. If you specified a full pathname for the executable when you started
TotalView, it searches the directory specified.

4. The directories specified in your PATH environment variable.

These search paths apply to all processes that you are debugging, and to all
directory search situations in TotalView.

To use the Set Search Directory command, go to the process window and complete
these steps:

1. Display the Display/Directory/Edit submenu and select the Set Search
Directory... (d) command.

A dialog box appears, as shown in Figure 20.
52 TotalView User’s Guide

Setting Search Paths
2. Enter the directories in the order you want them searched, separating each
directory with a space. You can use multiple lines if needed.

The current working directory (.) is the first directory listed in the window.
You can move the current working directory further down the list, but if you
remove it, TotalView inserts it at the top of the list again.

You can specify relative pathnames, which are interpreted with respect to the
current working directory.

3. Select OK (or press Shift-Return).

Once you change the list of directories with the Set Search Directory command,
the debugger automatically searches again for the source file that is currently
displayed in the process window.

Figure 20. Dialog Box for Set Search Directory Command

Note: You can specify search directories that apply across
TotalView sessions with an X Window System resource.
Refer to “totalview*searchPath: dir1[,dir2,...]” on page 277.
TotalView User’s Guide 53

CHAPTER 3: Setting Up a Debugging Session
Setting Command Arguments

When the debugger creates a process, it passes one argument to the program by
default: the name of the file containing the executable code for the process. If your
program requires any arguments from the command line, you must set these
arguments before you start the process. To do so, go to the process window and
complete the following steps:

1. Display the Arguments/Create/Signal submenu and select the Set
Command Arguments... (a) command. A dialog box appears, as shown in
Figure 21.

2. Enter the arguments to be passed to the program. Separate each argument
with a space, or place each argument on a separate line. If an argument has
spaces in it, enclose the whole argument in double quotes.

3. Select OK (or press Shift-Return).

You can also set command-line arguments with the –a option of the totalview
command, as discussed in “Starting the TotalView Debugger” on page 37.

Figure 21. Dialog Box for Set Command Arguments Command
54 TotalView User’s Guide

Specifying Environment Variables
Specifying Environment Variables

You can set and edit the environment variables that TotalView passes to a process
when it creates the process. When TotalView creates a new process, it passes a list
of environment variables to the process. By default, a new process inherits
TotalView’s environment variables, and a remote process inherits tvdsvr’s
environment variables.

If the environment variable dialog is empty, the process inherits its environment
variables from TotalView or tvdsvr. If you add environment variables to the dialog,
the process no longer inherits its environment variables from TotalView or tvdsvr,
it only receives the variables specified in the dialog box. Therefore, if you want to
add to the variables inherited from TotalView or tvdsvr, you must enter all of the
variables inherited into the dialog and then make your additions in the dialog.

An environment variable is specified by: name=value. For example,
DISPLAY=unix:0.0 specifies an environment variable named DISPLAY with the
value unix:0.0.

To add, delete, or modify the environment variables, go to the process window and
complete the following steps:

1. Display the Arguments/Create/Signal submenu and select the Set
Environment Variables command. In the dialog box, you must place each
environment variable on a separate line. TotalView ignores blank lines.
Figure 22 shows the dialog box.
TotalView User’s Guide 55

CHAPTER 3: Setting Up a Debugging Session
2. In the dialog box, you must place each environment variable on a separate
line. TotalView ignores blank lines.

3. To change the name or value of an environment variable, edit the line.

4. To add a new environment variable, insert a new line and specify the name
and value.

5. To delete an environment variable, delete the line. Deleting all the lines causes
the process to inherit TotalView’s or tvdsvr’s environment.

6. Select OK (or press Shift-Return).

Setting Input and Output Files

Before beginning execution of the program you’re debugging, TotalView
determines how to handle standard input (stdin) and standard output (stdout). By
default, TotalView creates the program so that it reads stdin from and writes stdout
to the shell window from which you started TotalView.

Figure 22. Environment Variables Dialog Box
56 TotalView User’s Guide

Monitoring TotalView Sessions
If desired, you can redirect stdin or stdout to a file. To do so, complete these steps
from the process window before you start executing your program:

1. Display the Arguments/Create/Signal submenu and select either Input
from File... (<) or Output to File... (>). A dialog box appears. Figure 23
shows the dialog for Input from File.

2. Enter the name of the file, relative to your current working directory.

3. Select OK (or press Shift-Return).

Monitoring TotalView Sessions

The TotalView debugger logs all significant events occurring for all processes you
are debugging. To view the event log, go to the root window and select the Show
Event Log Window command. The event log window displays a sequential list
of events that you can scroll.

Figure 23. Dialog Box for Input from File Command
TotalView User’s Guide 57

CHAPTER 3: Setting Up a Debugging Session
Figure 24 shows the event log window.

Figure 24. Event Log Window
58 TotalView User’s Guide

3

CHAPTER 4:

Setting Up Remote Debugging
Sessions
This chapter explains how to set up TotalView remote debugging sessions for
debugging over the network or over a serial line.

For information on how to set up a basic debugging session, see Chapter 3, “Setting
Up a Debugging Session,” on page 35. For information on how to set up a parallel
debugging session, see Chapter 5, “Setting Up Parallel Debugging Sessions,” on
page 75.

In this chapter, you will learn how to:

• Debug remote processes

• Connecting to remote machines

• Start the debugger server for remote debugging

• Debug over a serial line
TotalView User’s Guide 59

CHAPTER 4: Setting Up Remote Debugging Sessions
Debugging Remote Processes

You can begin debugging remote processes either by loading a remote executable,
or by attaching to a remote process.

Loading a
Remote
Executable

To load a remote program into TotalView, do the following:

1. Complete steps in “Loading a New Executable” on page 38.

2. Enter the host name or TCP/IP address of the machine on which the
executable should be running in the bottom section of the dialog box, as shown
in Figure 25.

Note: You cannot examine core files on remote nodes.

Figure 25. New Program Window Dialog Box
60 TotalView User’s Guide

Debugging Remote Processes
3. Press Return.

Attaching to a
Remote Process

You can attach to a remote process using the same dialog boxes as you do when
you attach to a local process, but you enter information in different boxes. You can
also attach to a remote process by bringing up the correct windows, then diving
into processes from them.

To attach to a remote process, complete the following steps:

1. Complete the steps in “Attaching Using New Program Window” on page 42.

2. Enter the host name or TCP/IP address of the machine on which the
executable should be running in the bottom section of the dialog box.

3. Press Return.

Note: On some multiprocessor platforms, there will be additional
radio buttons in the lower section of the dialog box. You can
use these buttons for debugging programs that are running on
groups or clusters of processors.

Note: If this method does not work, you might need to disable the
auto-launch feature for this connection and start the debugger
server manually. In step 2, as an alternative, you can specify
hostname:portnumber, where portnumber is the TCP/IP port
number on which the debugger server (tvdsvr) is
communicating with TotalView. For more information on
this alternative, refer to “Starting the Debugger Server for
Remote Debugging” on page 64.

Note: On some multiprocessor platforms, there will be additional
radio buttons in the lower section of the dialog box. You can
use these buttons for debugging programs that are running on
groups or clusters of processors.
TotalView User’s Guide 61

CHAPTER 4: Setting Up Remote Debugging Sessions
You can also attach to a remote process by first connecting to a remote host with
the New Program Window (n) command and then bringing up a list of unattached
processes with the Show All Unattached Processes (N) command. You can attach
to these processes by diving into them.

1. Connect to the remote host. For details on how to do this, see “Connecting
to Remote Machines” on page 63.

2. After you connect to the remote host, bring up a list of unattached processes.
You can attach to these processes by diving into them. For details on these
steps, see “Attaching Using Show All Unattached Processes” on page 40.

Note: If this method does not work, you might need to disable the
auto-launch feature for this connection and start the debugger
server manually. In step 2, as an alternative, you can specify
hostname:portnumber, where portnumber is the TCP/IP port
number on which the debugger server (tvdsvr) is
communicating with TotalView. For more information on
this alternative, refer to “Starting the Debugger Server for
Remote Debugging” on page 64.
62 TotalView User’s Guide

Connecting to Remote Machines
Connecting to Remote Machines

If the you want to connect to a remote machine, you can do it in two ways—by
using the –remote option on the command line when you start TotalView or by
using the New Program Window (n) command from the root window after you
start TotalView.

If TotalView supports the runtime library (e.g., MPI, PVM, or HPF) then it
automatically connects to remote hosts for you as part of the automatic process
acquisition. Therefore, you do not need to manually connect to the remote
machines. For more information, see Chapter 5, “Setting Up Parallel Debugging
Sessions,” on page 75.

For details on the syntax for the command-line –remote option, see “Starting the
TotalView Debugger” on page 37.

To connect to a remote host from a TotalView session, follow these steps:

1. Issue the New Program Window (n) command from the root window. A
dialog box appears, as shown in Figure 26.

Figure 26. Remote Host Connection
TotalView User’s Guide 63

CHAPTER 4: Setting Up Remote Debugging Sessions
2. Delete the text from the Executable file name and Attach to existing process
or core file fields.

3. Enter the host name or TCP/IP address of the machine on which the
executable should be running in the bottom section of the dialog box.

4. Press Return.

Starting the Debugger Server for Remote
Debugging

Debugging a remote process with TotalView is identical to debugging a native
process except for the following:

• The performance of your session depends on the performance of the network
between the native and remote machines. If the network is overloaded,
debugging can be slow. In general, we designed remote debugging to work
with the speeds encountered on a LAN.

• TotalView works with another process running on the remote machine, called
the TotalView Debugger Server (tvdsvr), to debug the remote process.

The rest of this section discusses the different ways you can start the TotalView
debugger server

The
Auto-Launch
Feature

By default, TotalView automatically launches tvdsvr for you, which is known as
the auto-launch feature. The advantage of auto-launch is that it makes it easy to
start debugging remote processes—you don’t need to take any action to start the
debugger server.

If you want to know more about auto-launch, here is the sequence of actions carried
out by you, TotalView, and tvdsvr when auto-launch is enabled:

Note: On some multiprocessor platforms, there will be additional
radio buttons in the lower section of the dialog box. You can
use these buttons for debugging programs that are running on
groups or clusters of processors.
64 TotalView User’s Guide

Starting the Debugger Server for Remote Debugging
1. With the New Program Window command, you specify the host name of
the machine on which you want to debug a remote process, as described in
“Debugging Remote Processes” on page 60.

2. TotalView begins listening for incoming connections.

3. TotalView launches the tvdsvr process with the server launch command.
“The Server Launch Command” on page 66 describes the command in detail.

4. The tvdsvr process starts on the remote machine.

5. The tvdsvr process establishes a connection with TotalView.

Figure 27 summarizes the actions carried out by the auto-launch feature.

Auto-Launch
Options

If the auto-launch feature does not work on your system, you can tailor the
following items:

• The command used by TotalView to launch tvdsvr

• The arguments passed to the launch command or to tvdsvr

• The length of time TotalView waits (that is, the timeout) to receive a
connection from tvdsvr

• Whether or not the auto-launch feature is enabled

The only constraint in tailoring auto-launch is that tvdsvr must be started on the
remote machine with the –callback and –set_pw arguments.

Figure 27. Auto-Launch Feature

2. Listens

3. Invokes

4. tvdsvr starts5. Makes
connection

TotalView

tvdsvr

Remote executable

Target machine

Host machine

command
TotalView User’s Guide 65

CHAPTER 4: Setting Up Remote Debugging Sessions
The Server Launch
Command

By default, TotalView uses the following command string when it automatically
launches the debugger server:

rsh %R –n "cd %D && tvdsvr –callback %L –set_pw %P –verbosity %V"

With this command string, the rsh command invokes a shell on the host name
specified by %R and invokes the commands enclosed in quotation marks, where:

%R Expands to the host name of the remote machine that
you specified in the New Program Window command.

–n Causes the remote shell to read standard input from
/dev/null.

When the remote shell is started by rsh, it first changes to the %D directory with
the cd command:

%D Expands to the full pathname of the directory to which
TotalView is connected.

Note that the “cd %D” portion of the command assumes that the host machine and
the target machine mount identical filesystems. That is, the pathname of the
directory to which TotalView is connected must be identical on both the host and
target machines.

Next, the remote shell starts the TotalView Debugger Server with the tvdsvr
command and the following arguments:

–callback Establishes a connection from tvdsvr to TotalView
using the specified host name and port number.

%L Expands to the host name and TCP/IP port number
(hostname:port) on which TotalView is listening for
connections from tvdsvr.

–set_pw Sets a 64-bit password for security. TotalView must
supply this password when tvdsvr establishes the
connection with it.

%P Expands to the password that TotalView automatically
generated.

–verbosity Sets the verbosity level of the TotalView Debugger
Server.

%V Expands to the current TotalView verbosity setting.
66 TotalView User’s Guide

Starting the Debugger Server for Remote Debugging
To change the server launch command each time you start TotalView, you can set
an X resource. See “totalview*serverLaunchString: command_string” on page 277
for more information.

For the complete syntax of the tvdsvr command, refer to “TotalView Debugger
Server Command Syntax” on page 299.

Changing the rsh
Command

If desired, you can substitute a different command for rsh, but the command must
invoke the tvdsvr process with the arguments shown (–callback and –set_pw).

For example, although the rsh command provides reasonable security, your site
may prefer to invoke remote processes with a more secure command. As another
example, you could even use a combination of the echo and telnet commands:

echo %D %L %P %V; telnet %R

Once telnet establishes the connection to the remote host, you could use the cd
and tvdsvr commands directly, using the values of %D, %L, %P, and %V that
were displayed by the echo command:

% cd directory

% tvdsvr –callback hostname:portnumber –set_pw password

If you have no command for invoking a remote process, you cannot use the auto-
launch feature and should disable it.

For information on the rsh command, refer to the manual page supplied with your
operating system.

Note: If you’re not sure whether rsh works at your site, try the
"rsh hostname" command from an xterm, where hostname
is the name of the host on which you want to invoke the remote
process. If this command prompts you for a password, you
must add the host name of the host machine to your .rhosts
file on the target machine for TotalView to invoke tvdsvr
properly.
TotalView User’s Guide 67

CHAPTER 4: Setting Up Remote Debugging Sessions
Changing the
Arguments

You can also change the command-line arguments passed to rsh (or whatever
command you select to invoke the remote process).

For example, if the host machine does not mount the same filesystems as your
target machine, it may need to use a different path to access the executable to be
debugged. If this is the case, you could change %D to an appropriate directory on
the target machine.

If your remote executable reads from standard input, you cannot use the –n option
with rsh because this causes the remote executable to receive an EOF immediately
on standard input. If you omit –n, the remote executable reads standard input from
the xterm in which you started TotalView. Therefore, if your remote program
reads from standard input, you should invoke tvdsvr from an xterm window. Use
the following command string to launch the debugger server:

rsh %R –n "cd %D && xterm –display hostname:0 –e tvdsvr –callback %L –set_pw %P
–verbosity %V"

Now, each time TotalView launches tvdsvr, a new xterm appears on your screen
to handle standard input and output for the remote program.

The Connection
Timeout

When TotalView automatically launches tvdsvr, it waits for 30 seconds to receive
a successful connection from tvdsvr. If TotalView receives nothing, it times out.
If desired, you can specify a timeout of anywhere between 1 and 3600 seconds (1
hour).

To change the timeout for every TotalView session, you can set an X resource.
See “totalview*serverLaunchTimeout: n” on page 278 for more information.

Note: If you notice that TotalView fails to launch tvdsvr (as shown
in the xterm window from which you started TotalView)
before the timeout expires, you can press CTRL-C in any
TotalView window to have TotalView terminate the launch.
Otherwise, TotalView terminates the launch when the
timeout occurs.
68 TotalView User’s Guide

Starting the Debugger Server for Remote Debugging
Disabling
Auto-Launch

If changing the auto-launch options will not make the auto-launch feature useful
for you, you can disable the auto-launch feature and start tvdsvr manually. You
can disable the auto-launch feature in several different ways:

• When you change the auto-launch options, as described in “Changing the
Options” on page 69, deselect the TotalView Debugger Server Auto
Launch Enabled checkbox at the top of the dialog box. This disables auto-
launch for your current TotalView session.

• When you debug the remote process, as described in “Debugging Remote
Processes” on page 60, specify both a host name and port number in the
bottom section of the New Program Window dialog box. This disables auto-
launch for the current connection.

• Set an X resource that disables auto-launch, as described in
“totalview*serverLaunchEnabled: {true | false}” on page 277. This disables
auto-launch for every TotalView session.

Changing the
Options

To actually change the server launch command or the connection timeout used by
TotalView to launch tvdsvr, or to actually disable the auto-launch feature entirely,
you use the server launch window command. To do so:

1. From the root window, select the Server Launch Window menu command.
A dialog box appears, as shown in Figure 28.

Note: If you disable the auto-launch feature, you must start tvdsvr
before you load a remote executable or attach to a remote
process.

Figure 28. Dialog Box for Launching Debugger Server
TotalView User’s Guide 69

CHAPTER 4: Setting Up Remote Debugging Sessions
2. Change the desired options.

3. Press Return.

Starting the
Debugger
Server
Manually

If you cannot tailor the auto-launch feature to work on your system, you can start
the debugger server manually if needed. The disadvantage of this method is that
it is insecure: other users could connect to your instance of tvdsvr and begin using
your UNIX UID.

To start tvdsvr manually:

1. From the root window, select the Server Launch Window command. A
dialog box appears, as shown in Figure 28.

2. Deselect the TotalView Debugger Server Auto Launch Enabled checkbox
to disable the auto-launch feature.

3. Press Return.

4. Log in to the remote machine and start tvdsvr:

% tvdsvr –server

The tvdsvr command prints out the port number used and the password
assigned and then begins listening for connections. Be sure to make note of
the password; you’ll need to enter it later in step 9.

If the default port number (4142) is not suitable, you need to use the
–port or –search_port options with the tvdsvr command. For details, refer
to “TotalView Debugger Server Command Syntax” on page 299.

5. From the root window in TotalView, select the New Program Window
command. A dialog box appears.

6. Enter the name of the executable in the top of the dialog.

7. Enter the hostname:portnumber in the bottom of the dialog.

Note: If you make a mistake or decide you want to revert to the
default option settings in the dialog, select the Defaults
button. You can revert to the default settings even if you used
an X resource to change the settings. Then, to apply the
original option settings, you need to select the OK button.
70 TotalView User’s Guide

Starting the Debugger Server for Remote Debugging
8. Press Return.

TotalView now attempts to establish a connection to tvdsvr.

9. When TotalView prompts you for the password, enter the password that
tvdsvr displayed in step 4.

Figure 29 summarizes the steps used when you start tvdsvr manually.

Figure 29. Manual Launching of Debugger Server

4. Listens

9. Makes
connectionTotalView

tvdsvr

Remote executable

Target machine

Host machine
TotalView User’s Guide 71

CHAPTER 4: Setting Up Remote Debugging Sessions
Debugging Over a Serial Line

In addition to debugging over a TCP/IP socket connection, TotalView allows you
to debug over a serial line. However, in cases where a network connection exists,
you will probably want to use TCP/IP sockets remote debugging for better
performance.

You will need to have two connections to the target machine. One connection will
be for the console and the other dedicated for use by TotalView. Do not try to use
one serial line; TotalView cannot share a serial line with the console.

Figure 30 shows an example TotalView debugging session over a serial line. In
this example, TotalView is running on a host machine and communicating over a
dedicated serial line with the TotalView Debugger Server running on the target
host. A VT100 terminal is connected to the target host’s console line which allows
you to type commands on the target host.

Figure 30. TotalView Debugging Session over a Serial Line

TotalView

TotalView Debugger Server

Remote executable

Host machine
Console
Line

Serial
Line

Target machine

VT100
72 TotalView User’s Guide

Debugging Over a Serial Line
Start the
TotalView
Debugger
Server

To start a TotalView debugging session over a serial line from the command line,
you must first start the TotalView debugger Server.

Through the console connected to the target machine, issue the command to start
the TotalView Debugger Server (tvdsvr) and specify the name of the serial port
device on the target machine. The syntax of the TotalView Debugger Server
command is:

% tvdsvr –serial device[:options]

where device is the name of the serial line device and options are options to control
the serial line on the target machine. The TotalView Debugger Server will wait for
TotalView to establish a connection.

For example:

% tvdsvr –serial /dev/com1:baud=38400
TotalView Debugger Server 3.8.1 (ICCDP protocol level 17, rev 15)
Copyright 1996-1998 by Dolphin Interconnect Solutions, Inc. ALL
RIGHTS RESERVED.
Copyright 1989-1996 by BBN Inc.

Currently the only option you are allowed to specify is the baud rate, which defaults
to 38400.

Starting
TotalView on a
Serial Line

Start TotalView on the host machine and include the name of the serial line device.
The syntax of the TotalView command is:

% totalview –serial device[:options] filename

where device is the name of the serial line device on the host machine, options are
options to control the serial line on the host machine and filename is the name of
the executable file. TotalView will connect to the TotalView Debugger Server.

For example:

% totalview –serial /dev/term/a test_pthreads

Currently the only option you are allowed to specify is the baud rate, which defaults
to 38400.
TotalView User’s Guide 73

CHAPTER 4: Setting Up Remote Debugging Sessions
New Program
Window

To start a TotalView debugging session over a serial line when you are already in
TotalView, do the following:

1. Start the TotalView Debugger Server. See “Start the TotalView Debugger
Server” on page 73.

2. Issue the New Program Window (n) command from the root window to
display the New Program Window dialog box, shown in Figure 31.

3. Enter the name of the executable file in the Executable file name field.

4. Enter the name of the serial line device in the Program location field, and
select the Serial line radio button.

5. Press Return or select OK.

Figure 31. New Program Window Dialog Box
74 TotalView User’s Guide

4

CHAPTER 5:

Setting Up Parallel Debugging
Sessions
This chapter explains how to set up TotalView parallel debugging sessions for
MPI, PVM, or Portland Group HPF applications. In this chapter, you will learn
how to debug:

• MPI and IBM PE applications

• PVM or DPVM applications

• Portland Group HPF applications

For tips on debugging parallel applications, see “Parallel Debugging Tips,” on
page 110.

For information on how to set up a basic debugging session, see Chapter 3, “Setting
Up a Debugging Session,” on page 35.

For information on how to set up a remote debugging session and on the TotalView
debugger server, see Chapter 4, “Setting Up Remote Debugging Sessions,” on
page 59.
TotalView User’s Guide 75

CHAPTER 5: Setting Up Parallel Debugging Sessions
Debugging MPI Applications

You can use TotalView to debug your Message Passing Interface (MPI) programs.
With TotalView, you can:

• Automatically acquire processes at start-up

• Attach to a parallel program and automatically acquire the parallel processes

• Display the message queue state of a process

Automatic process acquisition at start-up is supported for the MPI
implementations:

• MPICH version 1.1.0 or later running on any platform that is supported by
both TotalView and MPICH (see “Debugging MPICH Applications,” on
page 77)

• Digital MPI (DMPI) running on Digital Unix on Alpha (see “Debugging
Digital MPI Applications,” on page 81)

• IBM MPI Parallel Environment (PE) running on AIX on RS/6000 and SP
(see “Debugging IBM MPI (PE) Applications,” on page 82)

• SGI MPI running on IRIX on MIPS processors (see “Debugging SGI MPI
Applications,” on page 86)

For more information on message queue display, see “Displaying Message Queue
State,” on page 87.

For tips on debugging parallel applications, see “Parallel Debugging Tips,” on
page 110.
76 TotalView User’s Guide

Debugging MPICH Applications
Debugging MPICH Applications

To debug Message Passing Interface/Chameleon Standard (MPICH) applications
you must use MPICH version 1.1.0 or later on a homogenous collection of
machines. If you need a copy of MPICH, it is available at no cost from Argonne
National Laboratory at http://www.mcs.anl.gov/mpi.

You should configure the MPICH library to use either the ch_p4, ch_shmem,
ch_lfshmem, or ch_mpl devices. For networks of workstations, ch_p4 is the
normal default. For shared-memory SMP machines, ch_shmem is the default. On
an IBM SP machine, use the ch_mpl device. The MPICH source distribution
includes all of these devices and you can choose which to use when you configure
and build MPICH on your machine.

See “Displaying Message Queue State,” on page 87 for message queue display.

Starting
TotalView on an
MPICH Job

You must have both TotalView (totalview) and the TotalView Debugger Server
(tvdsvr) in your path when you start an MPICH job under TotalView’s control.
Use the MPICH mpirun command that you customarily use and add the –tv flag:

% mpirun [MPICH-arguments] –tv program [program-arguments]

For example:

% mpirun –np 4 –tv sendrecv

The MPICH mpirun command uses the value of the environment variable
TOTALVIEW as the command that starts the first process in the parallel job.
Therefore, by setting this environment variable, you can use a different TotalView,
or pass command line options to TotalView.

Note: Please see the TotalView release notes for information on
how to patch your MPICH 1.1.0 distribution.

Note: When you configure MPICH, you must ensure that the
MPICH library maintains all of the information required by
TotalView. Use the –debug option with the MPICH
configure command.
TotalView User’s Guide 77

CHAPTER 5: Setting Up Parallel Debugging Sessions
For example, you can make mpirun invoke TotalView with the –no_stop_all flag
by issuing the C shell command:

% setenv TOTALVIEW "totalview –no_stop_all"

On workstations, TotalView starts the first process of your job, the master process,
under the control of the debugger. Then, you can set breakpoints, and debug your
code as usual.

On the IBM SP machine, the mpirun command uses IBM’s poe command to start
an MPI job. The MPICH mpirun command must still be used on the SP to start
an MPICH job., including the use of the –tv flag. However, the details of process
start-up are different since poe is being used to start the MPI program. For details
of using TotalView with poe, see “Starting TotalView on a PE Job,” on page 83.

When you let code run through the call to MPI_Init(), TotalView automatically
acquires the other processes that make up your parallel job. A dialog box appears
asking if you want to stop the spawned processes. This allows you to stop all of
the processes in MPI_Init() so you can check their states before they run too far.
See Figure 32.

Answer Yes, or type y, if you want to stop the spawned processes.

Answer No, or type n, if you want the processes to continue to run.

TotalView automatically copies breakpoints from the master process to the slave
processes as it acquires them. This allows you to set up breakpoints in the slave
processes by placing them in the master process. You do not have to first stop the
slave processes in MPI_Init(). Next, TotalView updates the root window to show
all the newly acquired processes.

Figure 32. Dialog Box for Stopping Spawned Processes
78 TotalView User’s Guide

Debugging MPICH Applications
Attaching to an
MPICH Job

TotalView allows you to attach to an MPICH application even if it was not started
under the control of the debugger. To attach to a running MPICH job, do the
following:

1. Start TotalView in the normal manner. See “Starting the TotalView
Debugger,” on page 37.

2. Issue the Show All Unattached Processes (N) command from the root
window. A new window appears on your screen displaying the Processes that
TotalView doesn’t own window, as shown in Figure 33.

3. On workstation clusters, attach to the first MPICH process.

Normally, the first MPICH process is the highest process with the correct
image name in the process list. Other instances of the same executable will
either be

• The p4 listener processes if you have configured MPICH with ch_p4

• Additional slave processes if you have configured MPICH with
ch_shmem or ch_lfshmem

• Additional slave processes if you have configured MPICH with ch_p4
and have a machine file that places multiple processes on the same
machine

• On an IBM SP, attach to the poe process that started your job. For details,
see “Starting TotalView on a PE Job,” on page 83.

Dive into this process to attach to it.

Figure 33. Processes that TotalView doesn’t own Window
TotalView User’s Guide 79

CHAPTER 5: Setting Up Parallel Debugging Sessions
4. After you attach to the processes, TotalView asks if you also wish to attach
to the slave MPICH processes. If you do, press Return or choose Yes. If you
do not, select No.

If you choose Yes, TotalView starts the server processes and acquires all of
the MPICH processes.

In some situations, the processes you expected to see may not exist (for example,
they may have crashed or exited). TotalView acquires all the processes it can and
then warns you if it could not attach to some of them. You can debug the processes
TotalView did acquire. If you attempt to dive into a process that no longer exists
(for example, through the source or target fields of a message state display),
TotalView gives you a message that the requested process no longer exists.

MPICH P4
procgroup Files

If you are using MPICH with an explicit P4 procgroup file (by using the –p4pg
flag), you must make sure you use the same absolute path name in your procgroup
file and on the mpirun command line. If your procgroup file contains different path
names that resolve to the same executable, TotalView treats each path name as a
separate instance of the executable, which causes debugging problems.

You must use the same absolute pathname of the executable on both the TotalView
command line and in the procgroup file. For example:

% cat p4group
local 1 /users/smith/mympichexe
bigiron 2 /users/smith/mympichexe
% mpirun –p4pg p4group –tv /users/smith/mympichexe

In this example, TotalView does the following:

1. Reads the symbols from the executable mympichexe only once

2. Places MPICH processes in the same TotalView share group

3. Names the processes mypichexe.0, mympichexe.1, mympichexe.2, and
mympichexe.3.

If Totalview assigns names such as mympichexe<mympichexe>.0, there is a
problem and you should check the contents of your procgroup file and mpirun
command line.
80 TotalView User’s Guide

Debugging Digital MPI Applications
Debugging Digital MPI Applications

You can debug Digital MPI applications on the Digital UNIX Alpha platform. To
use TotalView with Digital MPI, you must use Digital MPI version 1.7.

See “Displaying Message Queue State,” on page 87 for message queue display.

Starting
TotalView on a
Digital MPI Job

Digital MPI programs are normally started with the dmpirun command. To start
under the control of TotalView, simply use TotalView as if you were debugging
dmpirun.

% totalview dmpirun –a dmpirun-command-line

TotalView will start up and show you the code for the main program in dmpirun.
Since this is not normally of interest, you should let the program run by using the
Go Process (g) command.

The dmpirun command runs and starts all of the MPI processes. TotalView will
acquire them and then ask you whether you want to stop them all.

Attaching to a
Digital MPI Job

To attach to a running Digital MPI job, attach to the dmpirun process that started
the job. Once you have attached to the dmpirun process, TotalView displays the
same dialogue as it does with MPICH. (See step 4 on page 80, included in
“Attaching to an MPICH Job,” on page 79.)

Note: There may be problems with re-running Digital MPI
programs under TotalView control. These have to do with
resource allocation issues within Digital MPI. Consult the
Digital MPI manuals and release notes for information on
how to clean up the MPI system state using mpiclean.
TotalView User’s Guide 81

CHAPTER 5: Setting Up Parallel Debugging Sessions
Debugging IBM MPI (PE) Applications

You can debug IBM MPI Parallel Environment (PE) applications on the IBM
RS/6000 and SP platforms.

To take advantage of TotalView’s automatic process acquisition capabilities, you
must be running release 2.2 or later of the Parallel Environment for AIX. If you
aren’t running release 2.2, you can run TotalView on release 2.1 if you also load
PTF 15.

See “Displaying Message Queue State,” on page 87 for message queue display.

Preparing to
Debug a PE
Application

To debug a PE application, you need to prepare by doing the following:

1. If you are using switch-based communications (either “IP over the switch”
or “user space”) on an SP machine, you must configure your PE debugging
session so that TotalView can use “IP over the switch” for communicating
with the TotalView Debugger Server, by setting adaptor_use to shared and
cpu_use to multiple.

Set these up by doing at least one of the following:

• If you are using a PE host file, add shared multiple after all host names
or pool IDs in the host file.

• Whether or not you have a PE host file, enter the following arguments
on the poe command line:

–adaptor_use shared –cpu_use multiple

• If you do not want to set the above arguments in the poe command line,
set the following environment variables before starting poe:

% setenv MP_ADAPTOR_USE shared

% setenv MP_CPU_USE multiple

When using “IP over the switch,” the default is usually shared adapter use
and multiple cpu use, but to be safe, set it explicitly using one of the above
techniques.
82 TotalView User’s Guide

Debugging IBM MPI (PE) Applications
2. You have to be able to use remote login using rsh. To do this, add the host
name of the remote node to the /etc/hosts.equiv file or to your .rhosts file.

When the program is using switch-based communications, TotalView tries
to start the TotalView Debugger Server using the rsh command with the
switch host name of the node.

3. When you are using switch-based communications, you must run TotalView
on one of the SP or SP2 nodes. Since TotalView uses “IP over the switch”
in this case, you cannot run TotalView on an RS/6000 workstation.

4. TotalView automatically sets the timeout value at 600 seconds. If you get
communications time-outs, you may need to set the value at a higher number,
as in the following example:

% setenv MP_TIMEOUT 1200

Starting
TotalView on a
PE Job

Parallel Environment (PE) programs can normally be run directly from the
command line with the following syntax:

% program [arguments] [PE_arguments]

They can also be run under the control of the poe command, as in the following:

% poe program [arguments] [PE_arguments]

However, TotalView is different in this regard. If you start TotalView on a PE
application, it requires that you start on the poe command. The syntax of the
command is:

% totalview poe –a program [arguments] [PE_arguments]

For example:

% totalview poe –a sendrecv 500 –rmpool 1

Note: timeout cannot be set through the poe command line.
TotalView User’s Guide 83

CHAPTER 5: Setting Up Parallel Debugging Sessions
Setting
Breakpoints

After TotalView is running, you can start the poe process, which in turn, starts the
parallel processes. Issue the Go Process (g) command from the process window.
A dialog box comes up asking if you want to stop the parallel tasks. See Figure 34.

If you want to set breakpoints in your code at this point, answer Yes to stop the
processes. TotalView initially stops the parallel tasks, so you can set breakpoints.
A program window for the first parallel task appears, in which you can set
breakpoints and control the parallel tasks, using normal TotalView commands.

If you have already set and saved breakpoints in a file and you want to reload the
file, may answer No. The parallel tasks continue running, but first TotalView
automatically reloads your breakpoints.

Starting Parallel
Tasks

After you set breakpoints, you can start all of the parallel tasks by issuing the Go
Group (G) command from the parallel task program window.

You should be very cautious in placing breakpoints at or before the line that
contains the call to MPI_Init (or MPL_Init), because time-outs occur during the
initialization process. Once any of the parallel processes is allowed to proceed into
the MPI_Init or MPL_Init call, all of the parallel processes should be allowed to
proceed through this call within a short time. For more information on this, see
“Avoiding unwanted time-outs,” on page 112.

Figure 34. Parallel Tasks Dialog Box

Note: None of the parallel tasks will get to the first line of code in
main until all of the parallel tasks have started.
84 TotalView User’s Guide

Debugging IBM MPI (PE) Applications
Attaching to a
PE Job

To take full advantage of TotalView’s poe-specific automation, you need to attach
to poe itself, and let TotalView automatically acquire the poe processes on its
various nodes. This set of acquired processes will include the process(es) you want
to debug.

You attach to the poe processes the same way you attach to other processes. For
details on attaching to processes, see “Attaching to Processes,” on page 40.

Attach from a Node
Running poe

To attach TotalView to poe from the node running poe, start TotalView in the
directory of the debug target. If you cannot start TotalView in the debug target
directory, you can start TotalView by editing the TotalView Debugger Server
(tvdsvr) command line before attaching to poe. See “The Server Launch
Command,” on page 66.

In the TotalView root window, bring up the unattached processes window, find
the poe process list in your root window, and attach to it by diving into it. TotalView
launches TotalView Debugger Servers as necessary.

TotalView updates the root window and opens a process window for the poe
process, which you just dove on. In the root window, find the process you want to
debug and dive on it to open a process window from which you can control and
debug the target process.

If some source code is available on-line but does not display in the source code
pane of the process window, you may have to issue the Display/Directory/Edit
(d) command and specify more directories to search.

Attach from Node
Not Running poe

To attach TotalView to poe from a node not running poe, follow the same
procedures as in attaching from a node running poe, except, since you did not run
TotalView from the node running poe (the start-up node), you will not be able to
see poe on the process list in your root window and you will not be able to start it
by diving into it.

To get poe on the process list in your root window, connect TotalView to the start-
up node. For details on how to do this, see “Connecting to Remote Machines,” on
page 63 and “Attaching to Processes,” on page 40. Then, update the list of
processes in the Processes that TotalView doesn’t own window by selecting
Update Process List (u) from the menu. In the area headed
<startup_node_name>, look for the process named poe and continue as if
attaching from a node running poe.
TotalView User’s Guide 85

CHAPTER 5: Setting Up Parallel Debugging Sessions
Debugging SGI MPI Applications

TotalView can acquire processes started by SGI MPI version 3.1 – part of the
Message Passing Toolkit (MPT) 1.2 package.

Message queue display is supported by release 1.3 of the Message Passing Toolkit.
See “Displaying Message Queue State,” on page 87 for message queue display.

Starting
Totalview with
SGI MPI

To start an SGI MPI program under TotalView control use TotalView as if you
were debugging mpirun itself:

% totalview mpirun –a mpirun-command-line

TotalView starts up and shows you the machine code for the SGI MPI mpirun.
Since you are not usually interested in debugging this you should let the program
run by using the Go Process (g) command.

The SGI MPI mpirun command executes and starts all of the MPI processes.
TotalView acquires them and then asks if you want to stop them at start-up. If you
do stop them, TotalView halts them before they enter the main program. You can
then enter breakpoints as appropriate.

If you set a verbosity level that allows informational messages, TotalView also
prints a message showing the name of the array and the value of the array services
handle (ash) to which it is attaching.

Attaching to an
SGI MPI Job

To attach to a running SGI MPI job, attach to the SGI MPI mpirun process that
started the job. Once you have attached to the SGI MPI mpirun process, TotalView
displays the dialog as it does with MPICH. (See step 4 on page 80, included
“Attaching to an MPICH Job,” on page 79.)
86 TotalView User’s Guide

Displaying Message Queue State
Displaying Message Queue State

The TotalView message queue display (MQD) feature allows you to display the
message queue state of your MPI program. This is a very useful debugging feature
for determining the cause of message passing deadlocks.

To use the message queue display feature, you must have the correct version of
MPI for your platform, as follows:

• MPICH version 1.1.0 or 1.1.1

• Digital MPI (DMPI) version 1.7

• IBM MPI Parallel Environment (PE) version 2.3 or 2.4; but only for programs
using the threaded IBM MPI libraries. This functionality is not available with
earlier releases, or with the non-thread-safe version of the IBM MPI library,
since these libraries do not maintain information accessible to TotalView.
Therefore, to use the TotalView MQD feature with IBM MPI applications,
you should compile and link your code using the mpcc_r, mpxlf_r, or
mpxlf90_r compilers.

• For SGI MPI TotalView message queue display, you must obtain the Message
Passing Toolkit (MPT) release 1.3. Check with SGI for availability.
TotalView contains the necessary changes to display message queue state
with this version of SGI MPI, so no TotalView changes should be required.

Message Queue
Display Basics

After an MPI process returns from the call to MPI_Init(), you can display the
internal state of the MPI library by issuing the Message State Window (m)
command in the Process State Info submenu of the process window. TotalView
opens a message state window for the process, as shown in Figure 35.

The contents of the message state window are valid only when the process is
stopped. The message state window displays the state of each of the MPI
communicators that exist in the process. In some MPI implementations, such as
MPICH, each user-visible communicator is implemented as two internal
communicator structures, one for point-to-point, the other for collective operations.
TotalView shows both structures.

Note: You cannot edit any of the fields in the message state window.
TotalView User’s Guide 87

CHAPTER 5: Setting Up Parallel Debugging Sessions
For each communicator, TotalView displays the following fields:

• Name of the communicator. MPI names the pre-defined communicators such
as MPI_COMM_WORLD. Note:

• MPICH 1.1 and Digital Unix MPI also provide the MPI-2
communicator naming functions, MPI_NAME_PUT and
MPI_NAME_GET, so you can associate a name with a communicator.
If you use MPI_NAME_PUT to name a communicator, TotalView
uses the name you gave it when displaying the communicator, so you
do not have to guess which communicator is which.

• IBM MPI and SGI MPI do not implement the MPI-2 communicator
naming functions, therefore only pre-defined communicators are
named. For user-created communicators, the integer value that
represents the communicator is displayed. This is the value that a
variable of type MPI_Communicator has if it represents the given
communicator.

• Comm_size gives the number of processes in the communicator. This is the
same as the result of MPI_Comm_size() applied to the communicator.

• Comm_rank gives the rank in the communicator of the process which owns
the message state window. This is the same as the result of
MPI_Comm_rank() applied to the communicator.

Figure 35. Message State Window

Communicator name

Pending sends

Rank in communicator

Pending receives

Unexpected messages

Communicator size

Process name
88 TotalView User’s Guide

Displaying Message Queue State
• List of pending receive operations.

• List of pending unexpected messages (i.e., messages that have been sent to
this communicator but have not yet matched with a receive).

• List of pending send operations.

Message
Operations

For each communicator, TotalView displays a list of pending receive operations,
pending unexpected messages, and pending send operations. Each operation has
index value displayed in square brackets ([n]), and each operation may include the
following fields:

Function The MPI function (IBM MPI only). The name of the
MPI function associated with the operation, e.g.,
MPI_Irecv.

Type The MPI data type (IBM MPI only). The MPI data type
associated with the operation, e.g., MPI_INT.

Status The status of the operation. Operation status can be
Pending, Active, or Complete.

Source or Target The source or target process. Source is the process from
which the message should be received. Target is the
process to which the message is being sent. This field
shows the index of the process in the communicator,
and the process name in parentheses. Dive into this field
to display a process window. If the message is being
received from MPI_ANY_SOURCE, then the display
will show ANY.

Actual Source For receive operations, if the Status is Complete and
the Source is ANY, the receiving process.

Tag The tag value. If the message is being received with
MPI_ANY_TAG, then the display will show ANY.

Actual Tag For receive operations, if the Status is Complete and
the Tag value is ANY, the received tag value.

User Buffer, System Buffer, or Buffer
The address of the buffer. Dive into this field to view
a data window displaying the buffer contents.
TotalView User’s Guide 89

CHAPTER 5: Setting Up Parallel Debugging Sessions
Buffer Length or Received Length
The buffer length in bytes, shown in decimal and
hexadecimal.

MPI Process
Diving

To display more detail, you can dive into certain fields in the message state window.
When you dive into a process field, TotalView does one of the following:

• Raises the relevant process window if it exists

• Focuses an existing process window on the requested process

• If no suitable process window exists, creates a new process window for the
process

If there is no relevant process window and you want TotalView to create a new
process window instead of refocusing an existing process window, hold down the
Shift key with the dive button.

MPI Buffer Diving You can also dive into the buffer fields, causing a normal data window to open.
TotalView attempts to guess the correct format for the data, based on the length
and alignment of the buffer. If TotalView guesses incorrectly, you can edit the type
field in the data window, as usual.

Note: TotalView currently does not set the buffer type using the
MPI data type. Some MPI implementations, such as MPICH,
do not maintain the type information. IBM MPI does maintain
the data type, however TotalView does not yet use it for
formatting the data buffer.
90 TotalView User’s Guide

Displaying Message Queue State
Pending Receive
Operations

TotalView displays each pending receive operation in the pending receives list.
Figure 36 shows examples of MPICH and IBM MPI pending receive operations.

Note: TotalView displays all of the receive operations that are
maintained by the IBM MPI library. You should set the
environment variable MP_EUIDEVELOP to the value
DEBUG if you want blocking operations to be visible,
otherwise only non-blocking operations are maintained. For
more details on the MP_EUIDEVELOP environment
variable, consult the IBM manual Parallel Environment
Operations and Use.

Figure 36. Message State Pending Receive Operation

Operation index

One receive operation

Dive to view data

Dive to view process

MPICH

IBM MPI

Additional fields

Tag selection of ANY
TotalView User’s Guide 91

CHAPTER 5: Setting Up Parallel Debugging Sessions
Unexpected
Messages

The unexpected messages portion of the display shows the envelope information
for messages that have been sent to this communicator in this process, but which
have not yet been matched by a receive operation. Figure 37 shows an example of
MPICH unexpected messages.

Figure 37. Message State Unexpected Messages
92 TotalView User’s Guide

Displaying Message Queue State
Pending Send
Operations

TotalView displays each pending send operations in the pending sends list.
Figure 38 shows an example of MPICH pending send messages.

The MPICH implementation does not normally maintain information about
pending send operations. However at the time you configure MPICH, you can
compile in additional code to maintain a list of pending send operations. These
additional data structures are maintained if the program is started under control of
the TotalView debugger. Otherwise they are not maintained, unless mpirun is
passed the –ksq (KeepSendQueue) flag.

Depending on the device for which MPICH was configured, blocking send
operations may or may not be visible. However, if they are not displayed here, you
can see that these operations are taking place because the call is on the stack
backtrace.

If you attach to an MPI program which is not maintaining the send queue
information, the Message State display shows this message:

Pending sends : no information available

Figure 38. Message State Pending Send Operation

Additional information
TotalView User’s Guide 93

CHAPTER 5: Setting Up Parallel Debugging Sessions
MPI Debugging
Troubleshooting

If you cannot successfully start TotalView on MPI programs, check the following:

• Can you successfully start MPICH programs without TotalView? The
MPICH code contains some useful scripts to help you verify that you can
start remote processes on all of the machines in your machines file. (See
tstmachines in mpich/util.)

• Does the tvdsvr fail to start? You must ensure that tvdsvr is on your PATH
as it is when you log in. Remember that rsh is being used to start the server,
and it does not pass your current environment to the process you started
remotely.

• You cannot get a message queue display if you get the following warning:

The symbols and types in the MPICH library used by
TotalView to extract the message queues are not as
expected in the image <<your image name>>. This is
probably an MPICH version or configuration problem.

You need to check the following:

• Be sure you are using MPICH 1.1.0 or later

• Be sure you configured it with the –debug flag. (To verify this, look in
the config.status file at the root of the MPICH directory tree).

• Make sure you have the correct MPI version and you have applied the required
patches. See the TotalView Release Notes for the most up-to-date information.

• Under some circumstances, MPICH kills TotalView with the SIGINT
signal.You might see this behavior when you try to restart an MPICH job by
using the TotalView Delete Program (^Z) command in the process window.
If TotalView exits and is terminated abnormally with Killed message from
the shell that started TotalView, try setting the TotalView –ignore_control_c
command line option. For example:

% setenv TOTALVIEW "totalview –ignore_control_c"

% mpirun –tv /users/smith/mympichexe
94 TotalView User’s Guide

Debugging PVM and DPVM Applications
Debugging PVM and DPVM Applications

You can debug applications that use the Parallel Virtual Machine (PVM) library
or the Digital UNIX Parallel Virtual Machine (DPVM) library with Totalview on
some platforms. TotalView supports ORNL PVM 3.3.4 or later on the Digital
UNIX Alpha, Sun 4, Sun 5, RS/6000, and SGI IRIX platforms and DPVM 1.4 or
later on the Digital UNIX Alpha platform.

For tips on debugging parallel applications, see “Parallel Debugging Tips,” on
page 110.

Supporting
Multiple
Sessions

When you debug a PVM or DPVM application, TotalView becomes a PVM tasker,
which establishes a debugging context for the duration of your session. You can
run:

• One TotalView PVM or DPVM debugging session, per user, per architecture;
that is, different users cannot interfere with each other on the same machine,
or same machine architecture.

One user can start TotalView to debug the same PVM or DPVM application
on different machine architectures. However, a single user cannot have
multiple instances of TotalView debugging the same PVM or DPVM session
on a single machine architecture.

For example, suppose you start a PVM session on a set of Sun 4 and Digital
UNIX Alpha machines. In this scenario, you start two different TotalView
sessions: one on a Sun 4 machine to debug the Sun 4 portion of the PVM
session, and one on a Digital UNIX Alpha machine to debug the Digital UNIX
Alpha portion of the PVM session. These two separate TotalView sessions
(Sun 4 and Digital UNIX Alpha) do not interfere with one another.

• Similarly, in one TotalView session, one user can run either a PVM
application or a DPVM application but not both.

If you are running TotalView on a Digital Alpha, you can have two TotalView
sessions, one debugging PVM and one debugging DPVM.

Note: See the TotalView Release Notes for the most up-to-date
information regarding your PVM or DPVM software.
TotalView User’s Guide 95

CHAPTER 5: Setting Up Parallel Debugging Sessions
Setting Up
ORNL PVM
Debugging

To enable PVM, create a symbolic link from the PVM bin directory:
$HOME/pvm3/bin/$PVM_ARCH/tvdsvr to the TotalView Debugger Server
(tvdsvr).With this link in place, TotalView can use the pvm_spawn() call to spawn
the debugger server tasks.

For example, if tvdsvr is installed in the /opt/totalview/bin, you can use the
following command:

% ln –s /opt/totalview/bin/tvdsvr $HOME/pvm3/bin/$PVM_ARCH/tvdsvr

If the symbolic link does not exist, TotalView cannot spawn the debugger server
and displays the following error:

Error spawning TotalView Debugger Server: No such file

Starting an
ORNL PVM
Session

Start the ORNL PVM daemon process before you start TotalView. See the ORNL
PVM documentation for information about the PVM daemon process and console
program.

1. Use the pvm command to start a PVM console session, which will start the
PVM daemon. If PVM is not running when you start TotalView (with PVM
support enabled), TotalView exits with the following message:

Fatal error: Error enrolling as PVM task: pvm error

2. If your application uses groups, start the pvmgs process before starting
TotalView. PVM groups are unrelated to TotalView process groups. For
information about TotalView process groups, refer to “Examining Process
Groups,” on page 129.

3. Enable PVM support in TotalView using one of the following methods:

• With an X resource; see “totalview*pvmDebugging: {true | false},” on
page 276. You need to restart TotalView after setting this new resource.
For more information, refer to “X Resources,” on page 263.

• Use command-line options to the totalview command:

–pvm Enables PVM support.
–no_pvm Disables PVM support

The command-line options override the X resource. For more
information on the totalview command, refer to “TotalView Command
Syntax,” on page 287.
96 TotalView User’s Guide

Debugging PVM and DPVM Applications
4. Set the TotalView directory search path to include the PVM directories. The
list of directories must include those needed to find both executable and
source files. The actual list of directories you need will vary, but you should
always include the current directory and your home directory.

You can set the directory search path using an X resource or the Set Search
Directory command. Refer to “totalview*searchPath: dir1[,dir2,...],” on
page 277 and “Setting Search Paths,” on page 52 for more information.

For example, to debug the PVM examples, you can specify the following list
of directories in the search path:

.
$HOME
$PVM_ROOT/xep
$PVM_ROOT/xep/$PVM_ARCH
$PVM_ROOT/src
$PVM_ROOT/src/$PVM_ARCH
$PVM_ROOT/bin/$PVM_ARCH
$PVM_ROOT/examples
$PVM_ROOT/examples/$PVM_ARCH
$PVM_ROOT/gexamples
$PVM_ROOT/gexamples/$PVM_ARCH

5. Verify that the default action taken by TotalView for the SIGTERM signal
is appropriate. You can examine the default actions with the Set Signal
Handling Mode command in TotalView. Refer to “Handling Signals,” on
page 48 for more information.

PVM uses the SIGTERM signal to terminate processes. By default,
TotalView stops a process when the process receives a SIGTERM signal,
which prevents the process from being terminated. If you want the PVM
process to terminate instead of stop, set the default action for the SIGTERM
signal to Resend.

Continue with “PVM/DPVM Automatic Process Acquisition,” on page 99.
TotalView User’s Guide 97

CHAPTER 5: Setting Up Parallel Debugging Sessions
Starting a
DPVM Session

DPVM requires no additional user configuration. However, you must start the
DPVM daemon process before you start TotalView. See the DPVM documentation
for information about the DPVM daemon and console program.

1. Use the dpvm command to start a DPVM console session, which will start
the DPVM daemon. If DPVM is not running when you start TotalView (with
DPVM support enabled), TotalView exits with the following message:

Fatal error: Error enrolling as DPVM task: dpvm error

2. Enable DPVM support using one of the following methods:

• With an X resource; see“totalview*DPVMDebugging: {true | false},”
on page 268. You need to restart TotalView after setting a new X
resource. For more information, refer to “X Resources,” on page 263.

• Use command-line options to the totalview command:

–dpvm Enables DPVM support.
–no_dpvm Disables DPVM support

The command-line options override the X resource. For more
information on the totalview command, refer to “TotalView Command
Syntax,” on page 287.

3. Verify that the default action taken by TotalView for the SIGTERM signal
is appropriate. You can examine the default actions with the Set Signal
Handling Mode command in TotalView. Refer to “Handling Signals,” on
page 48 for more information.

DPVM uses the SIGTERM signal to terminate processes. By default,
TotalView stops a process when the process receives a SIGTERM signal,
which prevents the process from being terminated. If you want the DPVM
process to terminate instead of stop, set the default action for the SIGTERM
signal to Resend.

Note: If you enable PVM support using X resources, and you wish
to use DPVM, you must use both –no_pvm and –dpvm
command line options when you start TotalView. Similarly,
if you enable DPVM support with X resources, use
–no_dpvm and –pvm command line options to debug PVM.
Finally, we do not recommend using X resources to start both
PVM and DPVM.
98 TotalView User’s Guide

Debugging PVM and DPVM Applications
PVM/DPVM
Automatic
Process
Acquisition

This section describes how TotalView automatically acquires PVM and DPVM
processes in a PVM or DPVM debugging session. Specifically TotalView uses the
PVM tasker feature to intercept pvm_spawn() calls.

When you start TotalView as part of a PVM or DPVM debugging session, it takes
the following actions:

• TotalView checks to make sure there are no other PVM or DPVM taskers
running. If TotalView finds a tasker on any host that it is debugging, it exits
with the message:

Fatal error: A PVM tasker is already running on
host 'host'

• TotalView finds all the hosts in the PVM or DPVM configuration. Using the
pvm_spawn() call, TotalView starts a TotalView Debugger Server (tvdsvr)
on each remote host that has the same architecture type as the host on which
TotalView is running. For each debugger server that TotalView starts, it prints
the following message:

Spawning TotalView Debugger Server onto PVM host
'host'

After you start TotalView and it starts all the appropriate debugger servers,
TotalView intercepts every PVM or DPVM task that is created using the
pvm_spawn() call on the hosts that are part of the debugging session. If a PVM
or DPVM task is created on a host with a different machine architecture, TotalView
ignores that task.

When TotalView receives a PVM or DPVM tasker event, it takes the following
actions:

1. TotalView automatically reads the symbol table of the spawned executable.

2. If a saved breakpoints file for the executable exists and you have the automatic
loading of breakpoints enabled, TotalView loads the breakpoints for the
process.

Note: If you add a host with a compatible machine architecture
to your PVM or DPVM debugging session after you
start TotalView, TotalView automatically starts a
debugger server on that host.
TotalView User’s Guide 99

CHAPTER 5: Setting Up Parallel Debugging Sessions
3. TotalView asks if you want to stop the process before it enters the main()
routine.

If you answer Yes, TotalView stops the process before it enters main() (that
is before it executes any user code). This allows you to set breakpoints in the
spawned process before any user code is executed. On most machine
architectures, if the process is statically linked, TotalView stops it in the
start() routine of the crt0.o module. If the process is dynamically linked,
TotalView stops it just after it finishes running the dynamic linker. In either
case, the process window displays Assembler instructions, so you need to use
the Function or File (f) command to display the source code for the main()
routine. For more information on this command, refer to “Finding the Source
Code for Functions,” on page 116.

Attaching to
PVM/DPVM
Tasks

You can attach to a PVM or DPVM task, providing that the task meets the following
criteria:

• The machine architecture on which the task is running is the same as the
machine architecture on which TotalView is running.

• The task must be created. In the PVM tasks and configuration window, which
you will learn about next, this is indicated when flag 4 is set.

• The task must not be a PVM tasker. In the PVM tasks and configuration
window, this is indicated when flag 400 is clear.

• The executable name must be known. If the executable name is listed as –,
then TotalView cannot determine the name of the executable, which can
happen when a task was not created using the pvm_spawn() call.

To attach to a PVM or DPVM task, complete the following steps:

1. Issue the Show All PVM Tasks (P) command from the TotalView root
window.

The PVM tasks and configuration window is displayed, as shown in
Figure 39. This window displays current information about PVM tasks and
hosts, and TotalView automatically updates this information as it receives
events from PVM.

Note: Since PVM does not generate all the events needed, you can
use the Update PVM Task List (u) command to force a
refresh when necessary.
100 TotalView User’s Guide

Debugging PVM and DPVM Applications
If we apply the criteria for attaching to tasks to the tasks shown in Figure 39,
you can attach to the tasks named xep and mtile because they have flag 4 set,
but you cannot attach to the executables named tvdsvr and – because they
have flag 400 set.

2. Dive on a task entry that meets the criteria for attaching to tasks. TotalView
attaches to the task.

3. If the task to which you attached has related tasks that TotalView can debug,
TotalView asks if you want to attach to the relatives of the task.

If you answer Yes, TotalView attaches to all the related tasks.

If you answer No, TotalView attaches to only the task you dove on.

TotalView looks for attached tasks that are related to the task to which you
just attached, and if it finds any, it places them in the same program group.
If TotalView is already attached to a task you dive on, TotalView simply
opens and raises the process window for the task.

Figure 39. PVM Tasks and Configuration Window

Tasks

Task ID
Parent Task ID
UNIX Process ID

Hosts

Daemon Task ID
Machine Architecture
TotalView User’s Guide 101

CHAPTER 5: Setting Up Parallel Debugging Sessions
Reserved
Message Tags

TotalView uses the following PVM message tags to communicate with the PVM
daemons and TotalView Debugger Server. Avoid sending messages that use these
reserved tags:

0xDEB0 through 0xDEBF

Debugging
Dynamic
Libraries

If the set of machines in your PVM debugging session are running different
versions of the same operating system, the dynamic libraries can vary from machine
to machine. If this is the case, you may see strange stack backtrace results when
your program is executing inside a dynamic library. To eliminate this problem,
make sure all of the hosts in your PVM configuration are running the same version
of the operating system and have the same dynamic libraries installed, or link your
programs statically.

Cleanup of
Processes

The pvmgs process registers its task ID in the PVM database. If the pvmgs process
is terminated, the pvm_joingroup() routine hangs because PVM does not clean
up the database. If this happens, you must terminate the PVM daemon and start it
again.

TotalView attempts to clean up the TotalView Debugger Server daemons (tvdsvr),
which also act as taskers, but occasionally some of these processes do not terminate.
If this happens, you must manually terminate the tvdsvr processes.
102 TotalView User’s Guide

Debugging Portland Group, Inc. (PGI) HPF Applications
Debugging Portland Group, Inc. (PGI)
HPF Applications

TotalView allows the source level debugging of High Performance Fortran (HPF)
code compiled with the Portland Group HPF (PGHPF) compiler.

For tips on debugging parallel applications, see “Parallel Debugging Tips,” on
page 110.

TotalView supports the following platforms:

• IBM RS/6000 and SP AIX 4.x

• SGI MIPS IRIX 6.x, for programs compiled with –64 only

• Sun Sparc SunOS 5 (Solaris 2.x)

See the TotalView Release Notes for supported PGHPF runtime configurations.

In addition to normal TotalView features, the TotalView PGHPF support allows:

• Source level display of HPF code

• Source level breakpoints in HPF code

• Display of distributed arrays, with optional display of the owning processor

• Visualization of distributed arrays

• Visualization of the distribution of distributed arrays

• Automatic update of all copies of replicated scalar variables

However, there are still a number of limitations:

• Display of user defined data types is not yet supported.

• EVAL points and expressions are executed locally and cannot reference
distributed arrays (apart from the $visualize intrinsic, which does work).

Note: Debugging PGHPF programs requires a separate TotalView
license key.
TotalView User’s Guide 103

CHAPTER 5: Setting Up Parallel Debugging Sessions
Installing
TotalView for
HPF

You will need a parallel run time that TotalView understands. With TotalView 3.8
and later, and PGHPF release 2.4, TotalView can track the process start-up used
by rpm or smp, the default PGHPF run time libraries. If you still want to use MPI,
then you need to ensure that the MPI implementation is supported by PGHPF and
TotalView. See “Debugging MPI Applications,” on page 76.

On IBM SP, or clusters of RS/6000 machines running IBM's Parallel Environment,
you can use any run time library that is started using the poe command.

On SGI IRIX, TotalView supports 64-bit PGHPF programs only. You must
compile your PGHPF program with the –64 compiler option.

Dynamically
Loaded Library

To debug PGHPF code, TotalView needs to be able to dynamically load the file
libtvhpf.so, which is distributed as part of the PGHPF product.

TotalView searches for this file in the following order:

1. TotalView attempts to dynamically load the unadorned file name libtvhpf.so.
This will succeed if:

• libtvhpf.so is in one of the directories on your dynamic library path
environment variable (LD_LIBRARY_PATH on Sun Sparc SunOS5,
IBM AIX, and SGI IRIX if LD_LIBRARYN32_PATH is not set)

• SGI IRIX only: libtvhpf.so is in one of the directories on your –n32
dynamic loader path (LD_LIBRARYN32_PATH)

2. If step 1 fails, then TotalView uses the PGI environment variable to find the
Portland Group installation tree. If the PGI environment variable is not set,
then the default installation directory (/usr/pgi) is tried instead.

Depending on the target architecture, TotalView then searches the directories in
the order shown in Table 8.

Table 8. PGHPF Dynamic Library Search Order

System Search Path

IBM RS/6000 and SP AIX 4.x $PGI/sp2/lib
$PGI/rs6000/lib

Sun Sparc SunOS 5 (Solaris 2.x) $PGI/solaris/lib
104 TotalView User’s Guide

Debugging Portland Group, Inc. (PGI) HPF Applications
If all of this fails to locate a copy of libtvhpf.so, then, if the TotalView verbosity
level is not silent, an error message is posted to tell you that the library could not
be found, HPF debugging is disabled, and TotalView proceeds to debug at the
intermediate Fortran level.

If you have a copy of libtvhpf.so, but TotalView cannot locate it using the strategy
described above, then you should either move it to one of the places that will be
searched by default, or add its directory to your LD_LIBRARY_PATH.

Setting Up
PGHPF
Compiler
Defaults

Set up the HPF compiler with the correct defaults for use with MPICH, TotalView,
the IBM parallel environment, and Fortran77, as in the following sections.

If you have PGHPF release 2.4, the rc files should already have been set up
correctly, but they will use the default run time, that is, not MPI. If you want to
use an MPI runtime you should consult the PGHPF manuals.

Setting Up
MPICH

You should follow the instructions in the PGHPF manual and MPICH manual to
ensure that you can build an HPF program and run it using MPICH. One way to
do this is to create your own .pghpfrc file and add lines similar to the following:

Set up to use my MPI with pghpf.
Change the path to libmpi.a as appropriate
#

INCLUDE $DRIVER/.pghpfrc
set HPF_MPI=/where_your_mpi_lives/libmpi.a
set HPF_COMM_LIBS="–lpghpf_mpi$P $HPF_MPI $HPF_SOCKET"

SGI MIPS IRIX 6.x $PGI/sgi/lib–n32
$PGI/sgi/lib–64
$PGI/origin/lib/mips4

Table 8. PGHPF Dynamic Library Search Order (Continued)

System Search Path

Note: With PGHPF version 2.4 and later, there is no need to use an
MPICH based run time, and you can ignore this section.
TotalView User’s Guide 105

CHAPTER 5: Setting Up Parallel Debugging Sessions
Adding these lines to your .pghpfrc file will force pghpf to use the MPI
communications library without requiring that you specify it on the command line
at compilation time.

Setting
TotalView
Defaults

To debug HPF code, you will normally want to set the default behavior of
breakpoints and barrier breakpoints to not stop other processes when the breakpoint
is hit. For more information, refer to “Parallel Debugging Tips,” on page 110.

Other relevant HPF resources are “totalview*hpf: {true | false},” on page 271 and
“totalview*hpfNode: {true | false},” on page 271.

Compiling HPF
for Debugging

To compile your HPF program for use with TotalView you should use the –g and
–Mtotalview flags to pghpf when both compiling and linking. The –Mtv flag is
the same as the –Mtotalview flag.

The –g flag on its own produces very confusing results. You may see the HPF
source code, but none of the HPF debugging features will work. If TotalView flags
your HPF code in the stack backtrace as being f77, then you have probably forgotten
the –Mtv flag when compiling.

The –g flag directs the PGHPF compiler to output additional information into a
.stb file. This contains the relationship between the HPF source file and the
intermediate F77 source. TotalView uses it to map HPF level entities (files,
functions, variables) to the executable image.

The –g flag is also required on the link step, since this instructs the HPF compiler
to produce a .stx file which indexes the external symbols in the program back to
their source files. This allows TotalView to read the .stb files only as they are
required.

If you want to debug at the level of the generated Fortran code, then you will also
have to give the –Mkeepftn flag. Otherwise, these intermediate Fortran files are
deleted by the compiler once they have been compiled.
106 TotalView User’s Guide

Debugging Portland Group, Inc. (PGI) HPF Applications
Starting HPF
Programs

The way in which an HPF parallel program is started depends on the machine on
which it is running and the choice of run time library which is linked into the HPF
code.

PGHPF smp and
rpm libraries

To start a program linked with these libraries under TotalView control proceed as
if you were using TotalView to debug the program. If you normally start the code:

% foo –bah –pghpf –np 6

you can debug it with this command:

% totalview foo –a –bah –pghpf –np 6

Starting HPF
Programs with
MPICH

In a workstation cluster environment using MPICH, you can debug your HPF
application with TotalView by using the –tv flag to the mpirun command.

So, where you might normally run your code with the following command:

% mpirun –np 4 foo

you can invoke TotalView with the following command:

% mpirun –tv –np 4 foo

Workstation
Clusters Using
MPICH

Debugging workstation clusters uses the same mechanism as debugging an MPICH
program, since a compiled HPF program is an MPICH program. For more
information, refer to “Debugging MPI Applications,” on page 76.

IBM Parallel
Environment

In the IBM parallel environment on an IBM SP or cluster of RS/6000 machines,
parallel programs are started with the poe command. To debug parallel codes, you
invoke TotalView on the poe command, for instance:

% totalview poe –a hpf_test –procs 6

For more information, refer to “Starting TotalView on a PE Job,” on page 83.
TotalView User’s Guide 107

CHAPTER 5: Setting Up Parallel Debugging Sessions
HPF TotalView
Advantages

The following are the advantages of debugging HPF in TotalView:

• You can display the contents of distributed arrays by diving on the array.

• You can see the distribution of distributed arrays, for instance, onto which
node a particular element of a distributed array has been mapped.

• You can update replicated scalar variables in all processes by updating the
value in any process. If the values were not all the same at the start, TotalView
gives you a warning, and you have to explicitly agree to the update before it
will take place.

• You can export a distributed array to the TotalView visualizer the same way
as any other array.

If you use the $visualize EVAL intrinsic, remember that EVAL code is executed
by every process. Therefore, you probably want to make this an non-shared action
point.

• You can export the distribution of an array to the visualizer to display it
graphically.

• You see the HPF source and variables.

• You can set breakpoints in the HPF source code.

In the address display for data windows showing HPF variables, there is an
additional field which tells you whether the variable is distributed [Dist] or
replicated [Repl]. If you update a replicated variable, then it is updated in all the
processes. A distributed variable will only be updated in its home process.

You cannot edit the address of a distributed array. If you edit the address of a
replicated scalar, then it will be marked as distributed, since it no longer makes
sense to update all of the processes, as you do not know what is at that address in
the other processes.

When you display an HPF distributed array, TotalView can also display the logical
processor on which each element resides. The display of this additional information
can be changed for a single data window using the Toggle Node Display option
in the menu of the data window. You can set the default for a whole TotalView
session by using the command line options –hpf_node or –no_hpf_node, or by
using the X resource “totalview*hpfNode: {true | false},” on page 271. No matter
which way you set the default, you can always toggle the behavior in each window.
108 TotalView User’s Guide

Debugging Portland Group, Inc. (PGI) HPF Applications
By default, this display is disabled. If it is enabled, then a distributed array will
look like Figure 40. Otherwise, the Node column is not displayed and a distributed
array display looks the same as that of a normal array.

To see the distribution of an array, or a section of an array, use the Visualize
Distribution command from the data window menu. This command exports the
HPF processor number on which each selected element of the array resides to the
visualizer. This command differs from the Visualize command, that exports the
values of the array elements, not the ownership information.

This capability is not available with the $visualize command, since distributions
are normally static, so re-displaying them under program control does not seem to
be useful.

Debugging
generated
FORTRAN 77

You can debug at the generated Fortran level by starting TotalView with the
–no_hpf flag or setting the X resource totalview*hpf to false.TotalView will then
ignore the .stb and .stx files and show you the generated F77. (Remember to
compile with –Mkeepftn, or these files won't exist!). Alternatively, of course,
simply removing the .stx file will also cause TotalView not to recognize the code
as HPF.

There is no need to relink the HPF program to debug at the generated FORTRAN
level.

Figure 40. Block Distributed Array on Three Processes
TotalView User’s Guide 109

CHAPTER 5: Setting Up Parallel Debugging Sessions
Parallel Debugging Tips

When you are debugging your parallel programs, the following points are important
to remember.

General Parallel
Debugging Tips

Here are some tips that are useful for debugging most parallel programs:

• When you are debugging message-passing and other multiprocess programs,
it is usually easier to understand the program’s behavior if you change the
default stopping action of breakpoints and barrier breakpoints. By default,
when one process in a multiprocess program hits a breakpoint, TotalView
will stop all the other processes. To change the default stopping action of
breakpoints and barrier breakpoints:

• Set the X resources “totalview*stopAll: {true | false},” on page 280
and/or “totalview*barrierStopAll: {true | false},” on page 266 to false.

• Specify the TotalView command line options –no_stop_all on
page 297 and/or –no_barr_stop_all on page 289.

These settings cause the default breakpoint and barrier breakpoint behavior
to allow other processes to continue to run when one of the processes in a
group hits the breakpoint.

These options flag only affects the default behavior. As usual, you can choose
the behavior for a specific breakpoint, individually, by setting the breakpoint
properties in the action points dialog box. See “Breakpoints for Multiple
Processes” on page 197.

• TotalView has two features that make it easier to get all of the processes in
a multiprocess program synchronized and executing the line.

• Process barrier breakpoints and the process hold/release features work
together to help you get control the execution of your processes. See
“Process Barrier Breakpoints” on page 201.

• The Run (to selection) Group (R) command is a special kind of single-
stepping command that allows you to run a group of processes to a
selected source line or instruction. See “Group-Level Single-Stepping”
on page 134.
110 TotalView User’s Guide

Parallel Debugging Tips
• Group commands are often more useful than process commands.

• It is often more useful to issue the Go Group (G) command, from the
Go/Halt/Step/Next/Hold submenu, to restart the whole application,
rather than the Go Process (g) command, and to issue the Halt Group
(H) command rather than the Halt Process (h) command.

• The group-level single-stepping commands, such as Step Group (S)
and Next Group (N), allow you to single-step a group of processes in
a parallel. See “Group-Level Single-Stepping” on page 134.

• If you use a process-level single-stepping command in a multiprocess
program, TotalView may appear to be hung (it continuously displays the
watch cursor). If you single-step a process over a statement that cannot
complete without allowing another process to run, and that process is stopped,
the stepping process appears to hang. In parallel programs, this happens most
often if you try to single-step a process over a communication operation that
cannot complete without the participation of another process. When this
happens:

• You can abort the single-step operation by pressing Control-C (^C) in
any TotalView window.

• Consider using a group-level single-step command instead.

• The TotalView root window has a feedback mechanism that helps you
determine where various processes and threads are executing. When you
select a line of code in the process window, the root window is updated to
give you visual feedback about which processes and threads are executing
that line. See “Displaying Thread and Process Locations” on page 140.

• You can view the value of a variable that is replicated across multiple
processes or multiple threads in a single variable window. See “Displaying
a Variable in All Processes or Threads” on page 177.

• You can restart a parallel program at any time during your debugging session.
If your program runs too far, you can kill the program by displaying the
Arguments/Create/Signal submenu in the process window and selecting the
Delete Program (^Z) command. This command kills the master process and
all the slave processes. You can then restart the master process (e.g, mpirun
or poe), and all of the slave processes will be recreated. Start-up will be faster
in these circumstances, because TotalView does not need to reread the symbol
tables or restart its server processes as they are already running.
TotalView User’s Guide 111

CHAPTER 5: Setting Up Parallel Debugging Sessions
MPICH Specific
Debugging Tips

Here are some debugging tips that apply only to MPICH:

• You can pass flags to TotalView through the MPICH mpirun command.

To pass flags to TotalView when running mpirun, you can use the
TOTALVIEW environment variable. For example, you can cause mpirun
to invoke TotalView with the –no_stop_all flag as in the following C-shell,
example:

% setenv TOTALVIEW "totalview –no_stop_all"

• If you start remote processes with MPICH/ch_p4, you may need to change
the way TotalView starts the servers.

By default, TotalView uses rsh to start its remote server processes. This is
the same behavior as ch_p4. If you configure MPICH/ch_p4 to use a different
start-up mechanism from another process, you will probably also need to
change the way that TotalView starts the servers.

For more information about tvdsvr and rsh, see “The Auto-Launch Feature,”
on page 64. For more information about rsh, see “The Server Launch
Command,” on page 66.

IBM PE Specific
Debugging Tips

Here are some debugging tips that apply only to IBM MPI (PE):

• Avoiding unwanted time-outs

You can cause undesired time-outs if you place breakpoints that stop other
process too soon after calling MPI_Init() or MPL_Init(). If you create "stop
all" breakpoints, it causes the first process to get to the breakpoint to stop all
the other parallel processes that have not yet arrived at the breakpoint. This
may cause a timeout.

To turn the option off, click with the right mouse button on the stop symbol
for the breakpoint. The breakpoint dialog box will come up, in which you
should deselect the box labeled “Stop All Related Processes when Breakpoint
Hit.”

• Controlling the poe process

The poe process continues under TotalView control, but normally, you should
not attempt to start, stop, or otherwise interact with poe. The parallel tasks
require that poe continue to run for normal functioning. For this reason,
112 TotalView User’s Guide

Parallel Debugging Tips
TotalView automatically continues poe when you continue any of the parallel
tasks, if poe had been stopped.

• Slow processes due to node saturation

If you try to debug a Parallel Environment for AIX program in which more
than three parallel tasks are run on a single node, the parallel tasks on each
such node may run noticeably slower than they would run if you weren’t
debugging them.

This effect becomes more noticeable as the number of tasks increases, and,
in some cases, the parallel tasks may make hardly any progress. This is
because the Parallel Environment for AIX uses the SIGALRM signal to
implement the communications operations, and the debugging interface in
AIX requires that the debugger intercept all signals. As the number of parallel
tasks on a node increases, the copy of TotalView or the TotalView Debugger
Server running on that node becomes saturated, and cannot keep up with the
SIGALRMs being sent, thus slowing down the tasks.
TotalView User’s Guide 113

CHAPTER 5: Setting Up Parallel Debugging Sessions
114 TotalView User’s Guide

5

CHAPTER 6:

Debugging Programs
This chapter explains how to perform basic debugging tasks with TotalView.
You’ll learn how to:

• Find code as you debug

• Display your code in source and assembler formats

• Invoke your editor on source files you are debugging

• Return to the currently executing line in the stack frame

• Interpret status and control registers

• Use commands for controlling processes and threads

• Control process groups in multiprocess programs

• Use single-step commands

• Debug with signal handlers

• Set the program counter
TotalView User’s Guide 115

CHAPTER 6: Debugging Programs
Finding the Source Code for Functions

If you linked a function to your program at compile time, you can then use
TotalView to search for the source code for that function. You can:

• Dive into the function name from the source code pane.

• On the Function/File/Variable submenu, select the Function or File (f)
command. When prompted, type the function name in the dialog shown in
Figure 41.

If TotalView finds the source code, it displays it in the source code pane. If the
function you selected was not compiled with source line information, TotalView
displays the disassembled machine code for the function instead of displaying the
source code.

Figure 41. Function Name Dialog

Tip: When you want to return to the original contents of the source
code pane, dive into the undive icon located in the upper right
corner of the source pane.

Tip: You can use the Edit Source Text command (see “Editing
Source Text” on page 122 for details) or an X Window
System client such as xmore, vi, or emacs to display these
files while debugging.
116 TotalView User’s Guide

Finding the Source Code for Functions
Resolving
Ambiguous
Names

Sometimes the function name you specify is ambiguous. For example, you may
have specified the name of a static function when your program contains multiple
static functions by that same name. Alternatively, you may have specified the name
of a member function in a C++ program where there are multiple classes with
member functions of that name. Or, you may have specified the name of a template
function. In all of these cases, TotalView prompts you to resolve the ambiguity.
Figure 42 shows an example of the dialog that TotalView displays when it
encounters an ambiguous function name.

To resolve the ambiguity, click one of the radio buttons or the text following it and
then click OK. Alternately, you may type an unambiguous name in the Function
Specification field.

Whenever you select a function name, its specification automatically appears in
the Function specification field allowing you to create a new function
specification by editing the existing one. When there are many screens of function
names in the dialog, this feature lets you specify a name you want; you do not have
to scroll to find a specific name.

Figure 42. Dialog for Resolving Ambiguous Function Names
TotalView User’s Guide 117

CHAPTER 6: Debugging Programs
Once the TotalView context is set to a particular instantiation of the function
template, then TotalView uses that instantiation and no longer displays a dialog to
disambiguate names. TotalView can prompt you to set the specific context when
you:

• Specify a function name with the Function or File (f) command

• Dive on a name in the source pane

• Halt execution at a line in the function

• Select a function by clicking on its line in the stack trace pane

• Previously selected a line in the function and that line is still selected
118 TotalView User’s Guide

Finding the Source Code for Files
Finding the Source Code for Files

You can display the source code for a given file in your program by choosing the
Function/File/Variable submenu and selecting the Function or File (f) command.
When prompted, enter the file name in the dialog box shown in Figure 41. You
may enter the name of a header file if the header file contains source lines that
produce executable code.

Source File
Extensions

TotalView maps filename extensions to source languages as shown in Table 9.

TotalView uses one of the following methods to identify a program as
FORTRAN 77 or Fortran 90:

• The compiler explicitly specifies the language in the debug information.

• The source filename has an .f90 or .F90 suffix; TotalView treats the program
language as Fortran 90.

• The code uses Fortran 90 features such as assumed shape arrays or pointers.
If TotalView determines that a file contains Fortran90 using this method, then
it is possible that functions or subroutines defined earlier in the same source
file will appear to be written in Fortran77. This should not be a problem, since
such functions cannot be using Fortran90 features.

Table 9. Source Language Mapping

File Extension Source Language

.cxx, .cc, .cpp, .C, .hxx, .H C++

.F, .f, .F90, .f90 FORTRAN 77 or Fortran 90

.hpf, .HPF HPF

All others C
TotalView User’s Guide 119

CHAPTER 6: Debugging Programs
Examining Source and Assembler Code

In the source code pane of the process window, you can display your program in
several different ways, as shown in Table 10. If you display Assembler in the source
code pane, you can also display addresses in two different ways, as shown at the
bottom of Table 10.

1. Source statements are treated like comments. You can set
breakpoints or evaluation points only at the machine level, not at the
source level. Setting an action point at the first instruction after a source
statement, however, is equivalent to setting a point at that source
statement.

2. If an address matches the address of a function, TotalView displays
the function name.

Figure 43 illustrates the effect of displaying Assembler code in different ways in
the source code pane. You can also display Assembler instructions in a variable
window. For more information, see “Displaying Machine Instructions” on
page 151.

Table 10. Ways to Display Source and Assembler Code

To Display This in the
Source Code Pane...

Select This from the
Display/Directory/Edit
Submenu...

Source code only (Default) Source Display Mode (Meta-s)

Assembler code only Assembler Display Mode
(Meta-a)

Source code interleaved with
Assembler code1

Interleave Display Mode (Meta-i)

Symbolic addresses (function
names and offsets) for all
locations and references2

Display Assembler Symbolically

Absolute addresses for all
locations and references
(Default)2

Display Assembler by Address
120 TotalView User’s Guide

Examining Source and Assembler Code
Figure 43. Different Ways to Display Assembler Code

Location by function and offset References by function and offset

Gridget (dotted grid)
indicates action point
can be set on instruction

Assembler Only
(absolute addresses)

Assembler Only
(symbolic addresses)

References by absolute addressLocation by absolute address

Source line

References by absolute addressLocation by absolute address

Interleaved
Source/Assembler
(absolute addresses)
TotalView User’s Guide 121

CHAPTER 6: Debugging Programs
Current Stack Frame

You can return to the executing line of code for the current stack frame by selecting
the Current Stackframe (c) command from the Current/Update/Relatives
submenu in the process window. This command forces the PC arrow onto the
screen and discards the dive stack.

The Current Stackframe (c) command is also useful if you want to undo the effect
of scrolling or finding a function or file using the Function or File... (f) command.
For details, see “Finding the Source Code for Functions” on page 116.

If the program has not begun to run, the Current Stackframe (c) command puts
you in the first executable line of code in your main program function or subroutine.

Editing Source Text

You can use the Edit Source Text (M-e) command on the Display/Directory/Edit
submenu to edit source files while you are debugging. TotalView starts your editor
on the source file being displayed in the source pane of the process window.

TotalView uses the editor launch string to determine how to start your editor. To
change the value of the editor launch string, see “Changing the Editor Launch
String” on page 122.

Changing the Editor Launch String

You can change the editor launch string to control the way the debugger starts your
editor when you use the Edit Source Text command.

The editor launch string is processed by TotalView and expanded into a command
string, that is then executed by the shell sh. This allows you to configure exactly
how the editor is started.
122 TotalView User’s Guide

Changing the Editor Launch String
TotalView recognizes certain items in the launch string, which are expanded before
the debugger starts your editor. The items that are expanded are as follows:

%E Expands to the value of the EDITOR environment
variable, or to vi if EDITOR if not set.

%N Expands to the line number in the middle of the source
pane. Use this option if your editor allows you to
specify an initial line number at which to position the
cursor.

%S Expands to the source file name displayed in the source
pane.

%F Expands to the font name with which you started
TotalView.

The default editor launch string is:

xterm -e %E +%N %S

which creates an xterm window in which to run the editor. If you use an editor that
creates its own X window, such as emacs or xedit, you do not need to create the
xterm window, and you should change the editor launch string.

You can change the editor launch string by using one of the following methods:

• Using an X resource.

Refer to “totalview*editorLaunchString: command_string” on page 268 for
more information.

• Using the Editor Launch String... command on the Display/Directory/Edit
submenu of the process window.
TotalView User’s Guide 123

CHAPTER 6: Debugging Programs
Interpreting Status and Control Registers

The stack frame pane in the process window lists the contents of CPU registers for
the selected frame (you may need to scroll down to see them). To learn about the
meaning of these registers, you need to consult the user’s guide for your CPU and
Appendix C, “Architectures,” on page 333.

For your convenience, TotalView interprets the bit settings of certain CPU
registers, such as the registers that control the rounding and exception enable
modes. You can edit the values of these registers and continue execution of your
program. For example, you might do this to examine the behavior of your program
with a different rounding mode.

Since the registers that are interpreted vary from platform to platform, see
Appendix C, “Architectures,” on page 333 for information on the registers
supported for your CPU. For general information on editing the value of variables
(including registers), refer to “Displaying Areas of Memory” on page 150.

Starting Processes and Threads

To start a process, go to the process window and select one of the following
commands from the Go/Halt/Step/Next/Hold submenu.

Go Process (g) Creates and starts this process. Resumes
execution if the process is not being held,
already exists and is stopped or at a
breakpoint. Starting a process causes all
threads in the process to resume execution.

Go Group (G) Creates and starts this process and all other
processes in the multiprocess program
(program group). Resumes execution and the
execution of all processes in the program
group if the process is not being held, already
exists and is stopped or at a breakpoint.
124 TotalView User’s Guide

Starting Processes and Threads
Note that issuing Go Group on a process
that’s already running starts the other
members of the program group.

Go Thread (^G) Starts this thread. Disabled if asynchronous
thread control is not available (see “Thread-
Level Control” on page 135).

For a single-process program, Go Process and Go Group are equivalent. For a
single-threaded process, Go Thread and Go Process are equivalent.

Commands that contain the term Group (for example, Go Group) refer to all
members of the program group. The term relatives generally refers to the program
group as well.

Creating a
Process without
Starting it

The Create Process (without starting it) (C) command creates a process and
stops it before it executes any of your program. For programs that are linked with
shared libraries, TotalView allows the dynamic loader to map in shared libraries.

Creating a process without starting it is useful:

• If you want to display or change global variables after a process is created,
but before it runs

• If you want to debug your C++ static constructor code

Creating a
Process by
Single-Stepping

The TotalView single-stepping commands allow you to create a process and run
it to a certain point in your programs. The process window single-stepping
commands in the Go/Halt/Step/Next/Hold submenu behave as follows when
creating a process:

Step (source line) (s) Creates the process and runs it to the first line
of the main() routine.

Next (source line) (n) Same as Step (source line) (s).

Note: If a process is being held by TotalView, the above commands
will not start the process or thread. See “Holding and
Releasing Processes” on page 128.
TotalView User’s Guide 125

CHAPTER 6: Debugging Programs
Step (instruction) (i) Creates the process and instruction steps the
first instruction of your program.

Next (instruction) (x) Creates the process and instruction nexts the
first instruction of your program.

Run (to selection) (r) Creates the process and runs it to the line or
instruction you have selected in the process
window.
126 TotalView User’s Guide

Stopping Processes and Threads
Stopping Processes and Threads

To stop a process or a thread, go to the process window and select one of the
following commands from the Go/Halt/Step/Next/Hold submenu:

Halt Process (h) Stops the process.

Halt Group (H) Stops the process and all related processes.

Note that issuing Halt Group (H) on a
process that’s already stopped stops the other
members of the program group.

Halt Thread (^H) Stops the thread. Disabled if asynchronous
thread control is not available (see “Thread-
Level Control” on page 135).

When the TotalView debugger stops a process, it updates the process window and
all related windows. When you start the process again, execution continues from
the point where you stopped the process.

Note: You can force the process window to update the process
information using the Update Process Info (u) command
from the Current/Update/Relatives submenu without
stopping the process. TotalView will flush its internal process
data cache and temporarily stop the process and reread the
thread registers and memory. This allows you to quickly
refresh your view of a process.
TotalView User’s Guide 127

CHAPTER 6: Debugging Programs
Holding and Releasing Processes

TotalView allows you to hold and release processes. When a process is held, any
command that would otherwise cause the process to run, such as Go Process (g)
or Go Group (G), has no effect.

Manual hold and release are useful in a number of cases:

• If you wish to run a subset of the processes, you can manually hold all but
the ones you want to run

• If a process is held at a process barrier point and you want to run it without
first running all the other processes in the group to that barrier, you can release
it manually and then run it

A process may also be held if it stops at a process barrier breakpoint. You can
manually release a process which is being held at a process barrier breakpoint. See
“Process Barrier Breakpoints” on page 201 for more information on how process
barrier breakpoints interact with holding and releasing processes manually.

When a process is being held, the root window and process window display a held
indicator. See Figure 80 on page 203.

To hold or release a process or group of processes:

• You can toggle the hold/release state of a process by choosing the
Hold/Release Process (w) command from the Go/Halt/Stop/Next/Hold
submenu in the process window.

• You can hold an entire group by choosing Hold Group command from the
Go/Halt/Step/Next/Hold submenu in the process window.

• You can then release the group by choosing Release Group command from
the Go/Halt/Step/Next/Hold submenu in the process window.

Note: If a process is running when you issue the Hold/Release
Process (w) command, TotalView first stops the process then
holds it.
128 TotalView User’s Guide

Examining Process Groups
Examining Process Groups

When you debug multiprocess programs, TotalView places processes in process
groups for convenience. TotalView’s process groups are not related to UNIX
process groups or PVM groups in any way.

Types of Process
Groups

When you start a multiprocess program, the debugger adds each process to a
process group as the process starts. The debugger groups the processes depending
on the type of system call (fork() or execve()) that created or changed the processes.
There are two different types of process groups:

Program Group Includes the parent process and all related processes.
A program group includes children that were forked
(processes that share the same source code as the
parent) and children that were forked but with a
subsequent call to execve() (processes that do not share
the same source code as the parent).

Share Group Includes only the related processes that share the same
source code.

In general, if you are debugging a multiprocess program, the program group and
share group differ only if the program has some children that are forked with a
subsequent call to execve().

The debugger names the processes in program groups and share groups according
to the name of the source program. The parent process is named after the source
program. Child processes that were forked have the same name as the parent, but
with a numerical suffix (.n). Child processes that call execve() after they were
forked have the parent’s name, the name of the new executable (in angle brackets),
and a numerical suffix.

For example, if the generate process forks no children, and the filter process forks
a child process that makes a subsequent call to execve() to execute the expr
program, the debugger names and groups the processes as shown in Figure 44.
TotalView User’s Guide 129

CHAPTER 6: Debugging Programs
Displaying
Process Groups

The root window displays the names of individual processes in multiprocess
programs, but not in the process groups. To display a list of process groups, select
the Show All Process Groups command from the root window. The process
groups window appears, as shown in Figure 45.

If you dive into any process group listed in the window, a single process group
window appears, as shown in Figure 46. By diving into any process listed in the
window, you display the process window for the process. (You can also dive into
the process listed in the root window to display its process window.)

Process Groups Process Names Relationship

filter
filter.1

filter<expr>.1.1

generate

parent process #1
child process #1

grandchild process #1

parent process #2

Figure 44. Example of Program Groups and Share Groups

Share Group 1
Program
Group 1

Share Group 2

Program
Group 2

Share Group 3

Figure 45. Process Groups Window

Type of process group

Dive into process group
to display single process
group window

Group numberName of executable
130 TotalView User’s Guide

Examining Process Groups
Changing
Program
Groups

In most situations, TotalView places a process in the correct program group, so
you do not normally need to change the program group of a process.

If necessary, however, you can move processes into different program groups.
When you move a process into a different program group, TotalView automatically
places it in the correct share group. The advantage of moving a process into a
different program group is that members of the same program group can start and
stop on a breakpoint at the same time. (See “Group-Level Single-Stepping” on
page 134 for details that apply to multiprocess programs.) Furthermore, members
of the same share group share the same set of action points.

To move a process into a different program group:

1. From the root window, select Show All Process Groups. The process groups
window appears.

2. Make note of the group ID number for the program group into which you’re
moving the process. This number is displayed in parentheses.

Figure 46. Single Process Group Window

State

Process name

Process ID

Dive into process to
display process window

Note: TotalView uses the name of the executable to determine the
share group to which the program belongs. TotalView does
not examine the program in any way to see if it is identical
to another program with the same name; TotalView assumes
the programs are identical because their names are identical.
Also, TotalView does not expand a program’s full pathname,
so if one instance of a program is named with the full
pathname (./foo), and another is named with the leaf name
(foo), the programs are placed in different share groups.
TotalView User’s Guide 131

CHAPTER 6: Debugging Programs
3. From the process window for the process to be moved, display the
Arguments/Create/Signal submenu, and select Set Process Program
Group. A dialog box appears, as shown in Figure 47.

4. Enter the group ID number into the dialog box and press Return.

Finding Active
Processes

Although a well-balanced multiprocess program distributes work evenly among
processes, this situation does not always occur in practice. In some multiprocess
programs, most of the active processes may be waiting for work. In this situation,
it’s tedious to look through the entire group to find the processes that are doing
work. Instead, you can use the Find Interesting Relative command to find them
quickly.

When you display the Current/Update/Relatives submenu and select the Find
Interesting Relative command from the process window:

• A process group window appears, listing the processes in decreasing order
of interest.

• A process window appears for the most interesting process in the group (if it
does not already have a process window open).

To see additional process windows for processes in decreasing order of interest,
select the Find Interesting Relative command again, or dive into the processes
listed in the process group window.

TotalView uses the following criteria to determine the order of interest:

• Running processes are more interesting than stopped processes.

• Processes with threads at breakpoints are more interesting than those that are
stopped at arbitrary locations.

Figure 47. Dialog for Changing Process Groups
132 TotalView User’s Guide

Setting a Breakpoint
• Processes with threads with deep (larger) stacks are more interesting than
processes with shallow (smaller) stacks.

• Processes with threads with unusual PCs are more interesting than processes
with threads with identical PCs. (The debugger examines all the threads and
produces a histogram of their PCs to determine this.)

Setting a Breakpoint

You can set breakpoints in your program by selecting the boxed line numbers in
the source code pane of a process window. A boxed line number indicates that the
line generates executable code. A STOP icon masking a line number indicates that
there is a breakpoint set on the line. Selecting the STOP icon clears the breakpoint.

When a program reaches a breakpoint it stops. You can let the program resume
execution in any of the following ways:

• Use single-step commands described in “Single-Stepping” on page 133.

• Use a signal handler if your program contains one to continue with a specific
signal. See “Continuing with a Specific Signal” on page 142.

• Use the set program counter command to resume execution at a specific
source line, machine instruction, or absolute hexadecimal value. See “Setting
the Program Counter” on page 143.

• Set breakpoints at lines you choose and allow your program to execute to that
breakpoint. See “Setting Breakpoints” on page 190.

• Set conditional breakpoints that cause a program to stop after it evaluates a
condition that you define, for example “stop when a value is less than 8.”See
“Defining Evaluation Points” on page 205.

TotalView provides additional features for working with breakpoints, process
barrier breakpoints, and evaluation points. For more information, refer to Chapter
8, “Setting Action Points,” on page 187.

Single-Stepping
TotalView User’s Guide 133

CHAPTER 6: Debugging Programs
TotalView supports single stepping commands that allow you to do any of the
following:

• Execute one source line or machine instruction at a time

• Step over or into function calls

• Run to a selected line, which acts like a temporary breakpoint

• Run until a function call returns

Single-step commands are on the Go/Halt/Step/Next/Hold submenu of the
process window, and operate at one of three levels: process-level, group-level or
thread-level. The various levels affect which threads within a process and processes
within a group are allowed to run while the single-stepping command is executing.

In all cases, the single-step commands operate on the primary thread, which is the
thread that is selected in the current process window.

Process-Level
Single-Stepping

The process-level single-step commands step the primary thread and allow other
threads in the process to run. Threads that reach the stopping point in advance of
the primary thread resume execution. The primary thread must reach the stopping
point before execution stops.

Some operating systems only implement a synchronous run model; when one
thread in the process runs for any reason, all threads must run. To step a thread on
these systems, you must use the full-process, single step commands. These
platforms include: LynxOS, IRIX, and SunOS operating systems.

Group-Level
Single-Stepping

The group-level single-step commands operate on a TotalView process group (the
program and share groups described on page 129). When you issue the command,
TotalView identifies the processes and threads that are similar to the primary
process and thread. These processes form a step group; TotalView steps this group
and stops only when all its members come to the command stopping point. Similar
processes are in the same share group (they execute the same code) and have at
least one thread with a PC that matches the PC of the primary thread. When several
threads in a process are similar to the primary thread, TotalView arbitrarily assigns
one thread to the step group.
134 TotalView User’s Guide

Single-Stepping
Membership in the step group can change while a group single-step command
executes. A thread can leave the step group if its PC diverges from that of the
primary thread, for example if it executes a conditional branch that moves away
from the primary thread. A process and thread that are not included in the step
group at command onset, can synchronize execution with the primary process.
TotalView then includes these cases in the step group.

The Run (to selection) Group (R) command does not work like the other group
single-step commands. It stops when the primary thread and at least one thread
from each process in the share group reach the command stopping point. This
allows you to use the command to synchronize a group of processes and bring them
to one location.

Thread-Level
Single-Stepping

The thread-level single-step commands step the primary thread to the command
stopping point, while holding other user threads in the process stopped.

Beware that the thread-level single step operations can fail to complete if the
primary thread depends on the input or output of a thread that is not running. For
example, if the primary thread requires a lock that another thread holds, and step
over a call that tries to acquire the lock, then the primary thread cannot continue
successfully. The other thread has to be allowed to run in order to release the lock.

Thread-Level
Control

Only some operating systems allow a single thread to start and stop independently
of others in the same process (this is known as asynchronous thread control).
TotalView single-thread commands are operable only on the Sun4 OS, Sun5 OS,
Alpha Digital UNIX, and IBM AIX operating systems.

Note: When it can identify manager threads, TotalView runs them
as it steps the single thread. Otherwise, TotalView runs the
primary thread by itself.
TotalView User’s Guide 135

CHAPTER 6: Debugging Programs
Selecting Source
Lines

Several of the single-stepping commands require you to select a line or machine
instruction in the source pane of the process window. To select a source line, simply
position the cursor over the desired line and select it. To deselect a source line,
select it again.

If you select a source line that has more than one instantiation (for example, in a
C++ function template or code in a header file), TotalView prompts you to select
a specific instantiation as shown in Figure 48.

To use this dialog box:

1. Select the function instantiation you want, or type in the function
specification.

2. Select the OK button.

3. Use the Abort button to abort setting the source line selection.

Note: See “Displaying Thread and Process Locations” on page 140
for a description of the side effect selecting a line or machine
instruction has on the root window display.

Figure 48. Dialog for Resolving Ambiguous Source Lines
136 TotalView User’s Guide

Single-Step Commands
Single-Step Commands

To execute a single-step command first select a thread, and then select a single-
step command from the Go/Halt/Step/Next/Hold submenu in the process window.

The following applies to all single step command:

• To cancel any single-step command in progress, position the mouse pointer
in the process window and press CTRL-C.

• If your program reaches a breakpoint while stepping over a function,
TotalView cancels the operation and your program stops at the breakpoint.

• If you issue a source line step command and the primary thread is executing
in a function that has no source line information, TotalView performs the
corresponding instruction step instead.

Stepping Into
Functions Calls

To execute a single source line or instruction, and possibly step into a function
call, select one of the following commands:

Step (source line) (s) Executes a single source line at the process-
level, stepping into functions, if any.

Step (source line) Group (S) Executes a single source line at the group-
level, stepping into functions, if any.

Step (source line) Thread (M-^s) Executes a single source line at the thread-
level, stepping into functions, if any.

Step (instruction) (i) Executes a single machine instruction at the
process-level, stepping into functions, if any.

Step (instruction) Group (I) Executes a single machine instruction at the
group-level, stepping into functions, if any.

Step (instruction) Thread (M-^i) Executes a single machine instruction at the
thread-level, stepping into functions, if any.

Using these commands, if you single-step a source line that contains a function
call, you automatically step into the function, if there is source line information
available for it. If desired, you can single-step over a function call as described in
the next section.
TotalView User’s Guide 137

CHAPTER 6: Debugging Programs
Stepping Over
Function Calls

When you step over a function, TotalView stops execution when the primary thread
returns from the function and reaches the source line or instruction after the function
call. To step over a function call select one of the following commands:

Next (source line) (n) Executes a single source line at the process-
level, stepping over functions, if any.

Next (source line) Group (N) Executes a single source line at the group-
level, stepping over functions, if any.

Next (source line) Thread (M-^n) Executes a single source line at the thread-
level, stepping over functions, if any.

Next (instruction) (x) Executes a single machine instruction at the
process-level, stepping over functions, if any.

Next (instruction) Group (X) Executes a single machine instruction at the
group-level, stepping over functions, if any.

Next (instruction) Thread (M-^x)
Executes a single machine instruction at the
thread-level, stepping over functions, if any.

Executing to a
Selected Line

You don’t have to set a breakpoint to stop execution on a specific line. TotalView
provides a convenient way for you to run your program to a selected line or machine
instruction. To do so, complete these steps from the process window:

1. In the source code pane, select the source line or instruction on which you
want the program to stop execution.

2. Select one of the following commands:

Run (to selection) (r) Runs the process until the primary thread
reaches the selected line.

Run (to selection) Group (R) Runs the primary thread and all the processes
in the share group until it and at least one
thread from each process in the share group
reach the selected line. Allows you to
synchronize a group of processes and bring
them to one location.

Run (to selection) Thread (M-^r) Runs the primary thread until it reaches the
selected line.
138 TotalView User’s Guide

Single-Step Commands
You can also run to a selected line in a nested stack frame. To do so:

1. Select a nested frame in the stack trace pane.

2. Select a source line or instruction within the function.

3. Issue a Run (to selection) command.

TotalView executes the primary thread until it reaches the selected line in the
selected stack frame.

If your program calls recursive functions, you can select a nested stack frame in
the stack trace pane to tailor execution even more. In this situation, TotalView uses
the frame pointer (FP) of the selected stack frame and the selected source line or
instruction to determine when to stop execution. When your program reaches the
selected line during execution, TotalView compares the value of the selected FP
to the value of the current FP in the following way:

• If the value of the current FP is deeper (more deeply nested) than the value
of the selected FP, TotalView automatically continues your program.

• If the value of the current FP is equal or shallower (less deeply nested) than
the value of the selected FP, TotalView stops your program.

Executing to the
Completion of a
Function

You can single-step your program out of a function call. To finish executing the
current function in a thread, select one of the following commands:

Return (out of function) (o) Runs the process until the primary thread
returns from the current function.

Return (out of function) Group (O)
Runs the primary thread and all the processes
in the share group until the primary thread
returns from the current function.

Return (out of function) Thread (M-^r)
Runs the primary thread until it returns from
the current function.

When the command completes, the primary thread is left stopped at the instruction
after the one that called the function.
TotalView User’s Guide 139

CHAPTER 6: Debugging Programs
You can also return out of several functions at once. To do so:

1. Select a nested stack frame in the stack trace pane.

2. Issue a Return (out of function) command.

TotalView executes the primary thread until it returns to the function in the selected
frame.

If your program calls recursive functions or mutually recursive functions, you can
select a nested stack frame in the stack trace pane to tailor completion of the
function even more. In this situation, TotalView uses the frame pointer (FP) of the
selected stack frame and the selected source line or instruction to determine when
to stop execution. When your program reaches the selected line, TotalView
compares the value of the selected FP with the value of the current FP in the
following way:

• If the value of the current FP is deeper (more deeply nested) than the value
of the selected FP, TotalView automatically continues your program.

• If the value of the current FP is equal or shallower (less deeply nested) than
the value of the selected FP, TotalView stops your program. If your program
reaches a breakpoint while executing to a selected line, TotalView cancels
the operation and your program stops at the breakpoint.

Displaying Thread and Process Locations

You can see which processes and threads in the share group are at a particular
location by selecting a source line or machine instruction in the source pane of the
process window. TotalView dims thread and process information in the root
window if the thread or process is not at the selected line. A process is considered
at the selected line if any of the threads in the process are at that line. Selecting a
line in the process window that is already selected, will remove the dimming in
the root window.

The root window reflects the line that you selected most recently. If you have
several process windows open, the display in the root window will change
depending on the line you selected last in a process window.The display can also
change after an operation that changes the process state, or when you issue an
Update Process Info (u) command.
140 TotalView User’s Guide

Displaying Thread and Process Locations
Figure 49. Dimmed Process Information in the Root Window

Selected line of source

Root window showing
dimmed process lines
TotalView User’s Guide 141

CHAPTER 6: Debugging Programs
Figure 49 shows root windows with dimmed process information and the
corresponding process windows that create this output. In this example, the parallel
program was run to a barrier breakpoint, and one process (mpirun<cpi>.0) was
single-stepped to the next source line. In the top, half of the figure, the line of
source at the barrier breakpoint in the process window was selected. The root
window shows the processes at that line not dimmed, and one process not at that
line dimmed. In the bottom half of the figure, the line at which the one process is
stopped was selected. The one process (mpirun<cpi>.0) was not dimmed, but the
others were dimmed. Finally, since the MPI starter process (mpirun) is not in the
same share group as the processes running the cpi program, the process information
is subject to dimming.

Continuing with a Specific Signal

Continuing execution of your program with a specific signal can be useful if your
program contains a signal handler. To do so, complete these steps from the process
window:

1. Display the Go/Halt/Step/Next/Hold submenu and select the Set
Continuation Signal command.

2. In the dialog box, enter the name (such as SIGINT) or number (such as 2) of
the signal to be sent to the thread.

3. Select OK.

4. Continue execution of your program with the Go, Step, Next, or Detach
from Process command.

TotalView continues the thread(s) with the specified signal(s).

Note: The continuation signal is set for the thread you are focused
on in the process window. If the target operating system
supports the multithreaded signal delivery capability, you
may set a separate continuation signal for each thread. If this
capability is not supported, then this command will clear any
continuation signal you specified for other threads in the
process.
142 TotalView User’s Guide

Setting the Program Counter
Setting the Program Counter

You might find it useful to resume the execution of a thread at some statement
other than the one where it stopped. To do this, you reset the value of the program
counter (PC). For example, you might want to skip over some code, execute some
code again after changing certain variables, or restart a thread that is in an error
state.

Setting the program counter can be crucial when you want to restart a thread that
is in an error state. Although the PC icon in the tag field points to the source
statement that caused the error, the PC actually points to the failed machine
instruction within the source statement. You need to explicitly reset the PC to the
beginning of the source statement. (You can verify the actual location of the PC
before and after resetting it by displaying it in the stack frame pane or displaying
interleaved source and Assembler code in the source code pane.)

In TotalView, you can set the PC of a stopped thread to a selected source line, a
selected instruction, or an absolute value (in hexadecimal). When you set the PC
to a selected line, the PC points to the memory location where the statement begins.
For most situations, setting the PC to a selected line of source code is sufficient.

To set the PC to a selected line:

1. If you need to set the PC to a location somewhere within a line of source code,
display the Assembler code. To do so, display the Display/Directory/Edit
submenu and select the Interleave Display Mode (M-i) command.

2. Select the source line or instruction in the source code pane. TotalView
highlights the line in reverse video.

If you select a line in a C++ function template that has more than one
instantiation, you will be prompted to select the instantiation that you want.
See the section “Executing to a Selected Line” on page 138 for a description
of how this works.

3. Display the Go/Halt/Step/Next/Hold submenu and select the Set PC to
Selection... (p) command. TotalView asks for confirmation, resets the PC,
and moves the PC icon to the selected line.
TotalView User’s Guide 143

CHAPTER 6: Debugging Programs
When you select a line and ask the debugger to set the PC to that line, TotalView
attempts to force the thread to continue execution at that statement in the currently
selected stack frame. If the currently selected stack frame is not the top stack frame,
the debugger asks your permission to unwind the stack:

This frame is buried. Should we attempt to unwind
the stack?

If you select Yes, the debugger discards all deeper stack frames (that is, all stack
frames that are more deeply nested than the selected stack frame) and resets the
machine registers to the proper value for the selected frame. If you select No, the
debugger sets the PC to the selected line, but it leaves the stack and registers in
their current state. Since you cannot assume that the stack and registers have correct
values, selecting No can cause problems. We recommend that you select Yes.

In general, we only recommend setting the PC to an absolute address for very
advanced users. If you need to do this, make sure you have the correct address; no
verification is done.

To set the PC to an absolute address:

1. Display the Go/Halt/Step/Next/Hold submenu and select the Set PC to
Absolute Value... command. A dialog box prompts you for a hexadecimal
address.

2. Enter the hexadecimal address into the dialog box.

3. Select OK. The debugger resets the PC and moves the PC arrow to the line
containing the absolute address.

Deleting Processes

To delete a process or group of processes, display the Arguments/Create/Signal
submenu and select the Delete Program (^Z)) command. If the process is part of
a multiprocess program, the debugger deletes all related processes as well. The
next time you start the process, for example, by using the Go Process (g) command,
the debugger creates and starts a fresh process.
144 TotalView User’s Guide

Restarting Programs
Restarting Programs

You can use the Restart Program command to restart a program that is running
or one that is stopped but has not exited. To restart a program, choose Restart
Program from the Arguments/Create/Signal submenu in the process window.

If the process is part of a multi-process program, TotalView deletes all related
processes, restarts the master process, and runs the newly created program.

Note: The Restart Program command is equivalent to the Delete
Program (^Z) command followed by the Go Process (g)
command.
TotalView User’s Guide 145

CHAPTER 6: Debugging Programs
146 TotalView User’s Guide

6

CHAPTER 7:

Examining and Changing Data
This chapter explains how to examine and change data as you debug your program.
You’ll learn how to:

• Display variable windows

• Dive into variables

• Change the values of variables

• Change the data types of variables

• Display machine instructions

• Change the addresses of variables

• Display C++ and Fortran types

• Display array slices

• Display the value of a variable in all processes or threads

• Visualize array data

• Display mutexes

• Display conditional variables
TotalView User’s Guide 147

CHAPTER 7: Examining and Changing Data
Displaying Variable Windows

You can display variable windows for local variables, registers, global variables,
areas of memory, and machine instructions.

Displaying
Local Variables
and Registers

In the stack frame pane of the process window, you can dive into any formal
parameter, local variable, or register to display a variable window. You can also
dive into formal parameters and local variables in the source code pane. The
variable window lists the name, address, data type, and value for the object, as
shown in Figure 50.

You can also display a local variable using the Variable... (v) command of the
Function/File/Variable submenu in the process window. When prompted, enter
the name of the variable in the dialog box.

If you keep the variable windows open while you continue to run the process or
thread, the debugger updates the information in the windows when the process or
thread stops for any reason. When TotalView is unable to find a stack frame for a
local variable that is currently displayed, Stale appears in the pane header to warn
you that you cannot trust the data, since no such variable exists.

Figure 50. Diving into Local Variables and Registers

Local variable

Register
148 TotalView User’s Guide

Displaying Variable Windows
Displaying a
Global Variable

You can display a global variable in two different ways:

• Diving into the variable in the source code pane.

• Displaying the Function/File/Variable submenu and selecting the
Variable... (v) command. When prompted, enter the name of the variable in
the dialog box.

A variable window appears for the global variable, as shown in Figure 51.

Displaying All
Global
Variables

For convenience, you can display all global variables used by the current process.
To do so, display the Function/File/Variable submenu and select the Global
Variables Window (V) command. A global variables window appears listing the
name and value of every global variable used by the process, as shown in
Figure 52.

Note: When you debug recursive code, TotalView does not
automatically refocus a data pane onto the leaf invocation of
a recursive function. If you have a breakpoint in a recursive
function, you might need to explicitly open a new data pane
to see the value of a local variable for that stack frame. This
is so, even though there is a window that shows the same
variable in the same function for a higher invocation.

Figure 51. Variable Window for a Global Variable
TotalView User’s Guide 149

CHAPTER 7: Examining and Changing Data
If desired, you can display a variable window for any global variable listed in the
global variables window. To do so, either:

• Dive into the variable in the global variables window.

• Select the Variable... (v) command from the global variables window, and
enter the name of the variable in the dialog box.

Displaying
Areas of
Memory

You can display areas of memory in hexadecimal and decimal. To do so, display
the Function/File/Variable submenu and select the Variable... (v) command.
When prompted, enter one of the following in the dialog box:

• A hexadecimal address

When you enter a single address, the debugger displays the word of data
stored at that address.

• A range of hexadecimal addresses

When you enter a range of addresses, the debugger displays the data (in word
increments) between the first and last address. To enter a range of addresses,
enter the first address, a comma (,), and the last address.

The variable window for an area of memory, shown in Figure 53, displays the
address and contents of each word increment.

Figure 52. Global Variables Window

Note: All hexadecimal addresses must have the “0x” prefix.
150 TotalView User’s Guide

Displaying Variable Windows
Displaying
Machine
Instructions

You can display the machine instructions for entire routines in the following ways:

• Dive into the address of an Assembler instruction in the source code pane
(such as main+0x10 or 0x60). A variable window displays the instructions
for the entire function and highlights the instruction that you dived into.

• Dive into the PC in the stack frame pane. A variable window lists the
instructions for the entire function containing the PC, and highlights the
instruction to which the PC points, as shown in Figure 54.

• Cast a variable to type <code>, as described in “Changing Type Strings to
Display Machine Instructions” on page 163

Figure 53. Variable Window for Area of Memory

Starting location
of memory area

Hexadecimal
value

Decimal
equivalent

Figure 54. Variable Window with Machine Instructions
TotalView User’s Guide 151

CHAPTER 7: Examining and Changing Data
Closing
Variable
Windows

When you are finished analyzing the information in a variable window, you can
issue the Close Window (q) command (to close the window) or the Close All
Similar Windows (Q) command (to close all variable windows).

Diving in Variable Windows

If the variable you display in a variable window is a pointer, structure, or array,
you can dive into the contents listed in the variable window. This additional dive
is called a nested dive. When you perform a nested dive, the variable window
replaces the original information with information about the current variable. With
nested dives, the original variable window is known as the base window.

Figure 55 shows the results of diving into a variable in the stack frame pane of
main() in the process window. In this example, we dove into a variable named
node with a type of node_t*, which is a pointer. The first variable window (base
window) in the figure displays the value of node.

Then, we dove on the value shown in the base window, and a nested dive window
replaced it. The nested dive window is shown at the bottom of the figure; it shows
the structure referenced by the node_t* pointer.

Figure 55. Nested Dives

First dive
(on the variable
node_t*, a pointer)

Second dive
(on the value of
node_t*)

Undive
icon

Base window

Nested window
152 TotalView User’s Guide

Changing the Values of Variables
Also, notice that the number of right angle brackets (>) in the upper left hand corner
indicates the number of nested dives that were performed in the window. TotalView
maintains each dive as part of a dive stack.

You can manipulate variable windows and nested dive windows in the following
ways:

• To “undive” from a nested dive, you click the Dive mouse button on the
undive icon, and the previous contents of the variable window appears.

• If you have performed several nested dives and want to create a new base
window, select the New Base Window command from the variable window.

• If you dive into a variable that already has a variable window open, the
variable window pops to the surface. If you want a duplicate variable window
open, hold down the Shift key when you dive on the variable.

• If you select the Duplicate Window command from the variable window, a
new variable window appears that is a duplicate of the current variable
window except that it has an empty dive stack.

Changing the Values of Variables

You can change the value of any variable or the contents of any memory location
by completing these steps in the variable window:

1. Select the value and use the field editor to change the value as desired.

You can type an expression as the value, including logical operators, if
desired. For example, you can enter 1024*1024.

2. Press Return to confirm your changes.

You can also edit the value of variables directly from the stack frame pane by
selecting them.

Note: You cannot change the value of bit fields directly, however,
you can use the expression window to assign a value to a bit
field. See “Evaluating Expressions” on page 215.
TotalView User’s Guide 153

CHAPTER 7: Examining and Changing Data
Changing the Data Type of Variables

The data type that you declared for the variable determines its format and size
(amount of memory) in the variable window. For example, in C, if you declare an
int variable, the debugger displays the variable as an integer.

You can change the way data is displayed in the variable window by editing the
data type. This is known as type casting. TotalView assigns type strings to all data
types, and in most cases, they are identical to their programming language
counterparts.

• When displaying a C variable, TotalView type strings are identical to C type
representations, except for pointers to arrays. By default, TotalView uses a
simpler syntax for pointers to arrays.

• When displaying a Fortran variable, TotalView type strings are identical to
Fortran type representations for most data types, including INTEGER,
REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, and
CHARACTER.

To change a type string in a variable window:

Using the field editor, edit the type string in the type field for the window. If
the window contains a structure with a list of fields, you can edit the type
strings of the fields listed in the window.

How TotalView
Displays C Data
Types

TotalView’s syntax is identical to C cast syntax for all data types except pointers
to arrays. Thus, you use C cast syntax for int, unsigned, short, float, double,
union, and all named struct types.

You read TotalView type strings from right to left. For example, <string>*[20]*
is a pointer to an array of 20 pointers to <string>.

Table 11 shows some common type strings.

Note: When you edit a type string, the TotalView debugger changes
how it displays the variable in the current variable window,
but other windows listing the variable remain the same.
154 TotalView User’s Guide

Changing the Data Type of Variables
The following sections comment on some of the more complex type strings.

If You Prefer C
Cast Syntax

If desired, you can always enter C cast syntax verbatim in the type field for any
type, and the debugger will understand it. In addition, the debugger can display C
cast syntax permanently if you set an X Window Resource. See
“totalview*cTypeStrings: {true | false}” on page 267 for further information.

Pointers to Arrays Suppose you declared a variable vbl as a pointer to an array of 23 pointers to an
array of 12 objects of type mytype_t. To declare the variable in your C program,
you use the syntax:

mytype_t (*(*vbl)[23]) [12];

To cast vbl to the same type in your C program:

(mytype_t (*(*)[23])[12])vbl

TotalView’s type string syntax for vbl would be:

mytype_t[12]*[23]*

Table 11. Common Type Strings

Type String Meaning

int Integer

int* Pointer to integer

int[10] Array of 10 integers

<string> Null-terminated character string

<string>** Pointer to a pointer to a null-terminated character
string

<string>*[20]* Pointer to an array of 20 pointers to null-
terminated strings
TotalView User’s Guide 155

CHAPTER 7: Examining and Changing Data
Arrays Array type names can include a lower and upper bound separated by a colon.

By default, the lower bound for a C or C++ array is 0, and the lower bound for a
Fortran array is 1. In the following example, an array of integers is declared in C
and then in Fortran:

int a[10]

integer a(10)

In the C example, the elements of the array range from a[0] to a[9], while in the
Fortran example, the elements of the array range from a(1) to a(10).

When the lower bound for an array dimension is the default for the language,
TotalView displays only the extent (that is, the number of elements) of the
dimension. Consider the following array declaration in Fortran:

integer a(1:7,1:8)

Since both dimensions of the array use the default lower bound for Fortran (1),
TotalView displays the data type of the array using only the extent of each
dimension, as follows:

integer(7,8)

In the case where an array declaration does not use the default lower bound,
TotalView displays both the lower bound and upper bound for each dimension of
the array. For example, in Fortran, an array of integers with the first dimension
ranging from –1 to 5 and the second dimension ranging from 2 to 10 is declared
as follows:

integer a(-1:5,2:10)

TotalView displays the following data type for this Fortran array:

integer(-1:5,2:10)

When you edit a dimension of an array in TotalView, you can enter just the extent
(if using the default lower bound) or both the lower and upper bounds separated
by a colon.

If desired, you can display a subsection of an array. Refer to “Displaying Array
Slices” on page 172 for further information.
156 TotalView User’s Guide

Changing the Data Type of Variables
Typedefs The debugger recognizes the names defined with typedef, but displays the
definition of such a type (that is, the base data type), rather than the name. For
example, if you declared the following:

typedef double *dptr_t;
dptr_t p_vbl;

The debugger displays the type string for p_vbl as double*, not as dptr_t.

Structures For structures, the debugger treats the string struct as a keyword. You can type
struct in as part of the type string, but it is optional. If you have a structure and
another data type with the same name, you must include struct with the name of
the structure so the debugger can distinguish between the two data types.

If you name a structure using typedef, the debugger uses the typedef name as the
type string. Otherwise, the debugger uses the structure tag for the struct.

For example, consider the structure definition:

typedef struct mystruc_struct {
int field_1;
int field_2;

} mystruc_type;

The debugger displays mystruc_type as the type string for struct mystruc_struct.

The debugger does not understand actual structure definitions in the type string.
For example, the debugger does not understand the type string struct {int a; int b;}.

Unions The debugger displays a union as it does a structure. Even though the fields of a
union are overlaid in storage, the debugger displays them on separate lines in the
variable window.

Note: When the TotalView debugger displays some complex arrays
and structures, it displays the (Compound Object) or (Array)
type strings in the variable window. Editing the (Compound
Object) or (Array) type strings might yield undesirable
results. We do not recommend editing these type strings.
TotalView User’s Guide 157

CHAPTER 7: Examining and Changing Data
Built-In Type
Strings

TotalView provides a number of predefined types. These types are enclosed in
angle brackets to avoid conflict with types already defined in the language. You
can use these built-in types anywhere a user-defined type can be used, such as in
an expression. These types are also useful when debugging executables with no
debugging symbol table information. Table 12 lists the built-in types.

Table 12. Built-In Type Strings

Type String Language Size Meaning

<string> C char Array of characters

<void> C long Area of memory

<code> C parcel1 Machine instructions

<address> C void* Void pointer (address)

<char> C char Character

<short> C short Short integer

<int> C int Integer

<long> C long Long integer

<long long> C long long Long long integer

<float> C float Single-precision floating-point number

<double> C double Double-precision floating-point
number

<extended> C long double Extended-precision floating-point
number2

<character> Fortran character Character

<integer> Fortran integer Integer

<integer*1> Fortran integer*1 One-byte integer

<integer*2> Fortran integer*2 Two-byte integer
158 TotalView User’s Guide

Changing the Data Type of Variables
1. A parcel is defined to be the number of bytes required to hold the shortest instruction for the target
architecture.

2. Extended-precision numbers must to be supported by target architecture.

3. complex types contain a Real_Part and an Imaginary_Part, which are both of type real.

4. complex*8 types contain a Real_Part and an Imaginary_Part, which are both of type real*4.

5. complex*16 types contain a Real_Part and an Imaginary_Part, which are both of type real*8.

<integer*4> Fortran integer*4 Four-byte integer

<integer*8> Fortran integer*8 Eight-byte integer

<logical> Fortran logical Logical

<logical*1> Fortran logical*1 One-byte logical

<logical*2> Fortran logical*2 Two-byte logical

<logical*4> Fortran logical*4 Four-byte logical

<logical*8> Fortran logical*8 Eight-byte logical

<real> Fortran real Single-precision floating-point number

<real*4> Fortran real*4 Four-byte floating-point number

<real*8> Fortran real*8 Eight-byte floating-point number

<real*16> Fortran real*16 Sixteen-byte floating-point number

<double precision> Fortran double
precision

Double-precision floating-point
number

<complex> Fortran complex Single-precision floating-point
complex number3

<complex*8> Fortran complex*8 real*4-precision floating-point
complex number4

<complex*16> Fortran complex*16 real*8-precision floating-point
complex number5

Table 12. Built-In Type Strings (Continued)

Type String Language Size Meaning
TotalView User’s Guide 159

CHAPTER 7: Examining and Changing Data
The following sections give more detail about several of the built-in types.

Character arrays
(<string> data
type)

If you declare a character array as char vbl[n], the debugger automatically changes
the type to <string>[n], a null-terminated, quoted string with a maximum length
of n. Thus, by default, the array is displayed as a quoted string of n characters,
terminated by a null character. Similarly, the debugger changes char* declarations
to <string>* (a pointer to a null-terminated string).

Since many character arrays in C are indeed strings, the debugger’s <string> type
string can be very convenient. If, however, you intended the char data type to be
a pointer to a single character or an array of characters, you can edit the <string>
back to a char (or char[n]) to display the variable as you declared it.

Areas of memory
(<void> data type)

The debugger uses the <void> type string for data of an unknown type, such as the
data contained in registers or in an arbitrary block of memory. The <void> type
string is similar to the int in the C language.

If you dive into registers or display an area of memory, the debugger lists the
contents as a <void> data type. Further, if you display an array of <void> variables,
the index for each object in the array is the address, not an integer. This address
can be useful when you display large areas of memory.

If desired, you can change a <void> type string to any other legal type. Likewise,
you can change any legal type into a <void> to see the variable in hexadecimal.

Instructions
(<code> data type)

The debugger uses the <code> data type to display the contents of a location as
machine instructions. Thus, to look at disassembled code that is stored at any
location, dive on the location and change the type string to <code>. To specify a
block of locations, use <code>[n], where n is the number of locations to be
displayed.
160 TotalView User’s Guide

Changing the Data Type of Variables
Type Casting
Examples

This section contains some common type casting examples.

Example:
Displaying the argv
Array

Typically, you declare argv, the second argument passed to your main() routine,
as either a char **argv or char *argv[]. Since these declarations are equivalent
(a pointer to one or more pointers to characters), the debugger converts both to the
type <string>** (a pointer to one or more pointers to null-terminated strings).

Suppose argv points to an array of 20 pointers to character strings. To edit the type
string (<string>**) so that the debugger displays the array of 20 pointers:

1. Select the type string for argv.

2. Edit the type string using the field editor commands. Change it to:

<string>*[20]*

3. To display the array, dive into the value field for argv.

Example:
Displaying
Declared Arrays

You can display declared arrays in the same way you display local and global
variables. In the stack frame or source code pane, dive into the declared array. A
variable window displays the elements of the array.

Example:
Displaying
Allocated Arrays

C code uses pointers for dynamically allocated arrays. For example, consider the
following:

int *p = malloc(sizeof(int) * 20);

In this example, TotalView doesn’t know that p actually points to an array of
integers. To display the array:

1. Dive on the variable of type int*.

2. Change its type to int[20]*.

3. Dive on the value of the pointer to display the array of 20 integers.
TotalView User’s Guide 161

CHAPTER 7: Examining and Changing Data
Opaque Type Definitions

An opaque type is a data type that is not fully specified. For example the following
C declaration defines p with a type of pointer to opaque struct foo:

struct foo;
struct foo *p;

When TotalView encounters type information that indicates a type is opaque, it
enters the type into the type table with <opaque> appended to the type name. With
the previous example, TotalView enters the following type name in the type table:

struct foo <opaque>

If the type is opaque and another module defines the type fully, then you can delete
<opaque> from the data type to have TotalView find the real definition for the type.

On the platforms where TotalView uses lazy reading of the symbol table, you must
force TotalView to read the symbols from the module containing the full type
definition of the opaque type. Use the Function or File command to force TotalView
to read the symbols, as described in “Finding the Source Code for Functions” on
page 116.

Changing the Address of Variables

You can edit the address of a variable in a variable window. When you edit the
address, the variable window shows the contents of the new location.

You can also enter an address expression, such as 0x10b8–0x80.
162 TotalView User’s Guide

Changing Type Strings to Display Machine Instructions
Changing Type Strings to Display Machine
Instructions

You can display machine instructions in any variable window. To do so:

1. Select the type string at the top of the variable window.

2. Change the type string to be an array of <code> data types, where the number
of elements, n, indicates the number of instructions to be displayed:

<code>[n]

The debugger displays the contents of the current variable, register, or area
of memory, as machine-level instructions.

The variable window (shown in Figure 54 on page 151) lists the following
information about each machine instruction:

Address The machine address of the instruction.

Value The hexadecimal value stored in the location.

Disassembly The instruction and operands stored in the location.

Offset+Label The symbolic address of the location as a hexadecimal
offset from a routine name.

You can also edit the value listed in the value field for each machine instruction.
TotalView User’s Guide 163

CHAPTER 7: Examining and Changing Data
Displaying C++ Types

Classes TotalView displays C++ classes and accepts the string class as a keyword. When
you debug C++, TotalView also accepts the unadorned name of a class, struct,
union, or enum in the type field. TotalView displays nested classes showing the
derivation by indentation. For example, Figure 56 shows how TotalView displays
a class c, defined as follows:

class b {
char * b_val;
public:
b() {b_val = “b value“;} };

class d : virtual public b {
char * d_val;

public:
d() {d_val = “d value“;} };

class e {
char * e_val;
public:
e() {e_val = “e value“;} };

class c : public d, public e {
char * c_val;
public:
c() {c_val = “c value“;} };

Figure 56. Displaying Nested C++ Classes
164 TotalView User’s Guide

Displaying C++ Types
Changing Class
Types in C++

Based on the C++ derivation hierarchy for a class, TotalView tries to display the
correct data when you change the type of a data pane to move up or down the
derivation hierarchy.

If a change in the data type also requires a change in the address of the data that is
currently displayed, TotalView queries you about changing the address. For
example, if you edit the type field in the class c shown in Figure 56 to class e,
TotalView queries as shown in Figure 57:

If you answer yes, TotalView changes the data and address to ensure that it displays
the correct base class member. If you answer no, then TotalView displays the area
of store as though it is an instance of the type you cast to, but the address is
unchanged.

Similarly, if you change a data type in the data pane in order to cast a base class
to a derived class, and that change requires a change to the address, TotalView
asks you to confirm the operation. For example, Figure 58 show the dialog posted
if we cast the from class e to class c:

Note: Some C++ compilers do not output accessibility information.
In these cases, the information is omitted from the display.

Figure 57. C++ Type Cast to Base Class Dialog Box

Figure 58. C++ Type Cast to Derived Class Dialog Box
TotalView User’s Guide 165

CHAPTER 7: Examining and Changing Data
Displaying Fortran Types

TotalView allows you to display FORTRAN 77 and Fortran 90 data types.

Displaying
Fortran
Common Blocks

TotalView handles Fortran common blocks in a manner consistent with the
semantics of Fortran. The names of common block members have function scope,
not global scope.

For each common block that is defined within the scope of a subroutine or function,
TotalView creates an entry in that function’s common block list. The stack frame
pane in the process window displays the name of each common block for a function.

TotalView creates a user defined data type for the common block. in which each
of the common block members are fields in the type. If you dive on a common
block name in the stack frame pane, TotalView displays the entire common block
in a variable window, as shown in Figure 59.

If you dive on a common block member name, TotalView searches all the common
blocks for a matching member name and displays the member in a variable window.

Figure 59. Diving into Common Block List in Stack Frame Pane

Common block list
in stack frame pane

Dive on common
block to see elements
166 TotalView User’s Guide

Displaying Fortran Types
Normally, TotalView displays the initial address for a common block in the data
pane. When the common block is a composite object with separate addresses for
each component, TotalView displays the Multiple tag to indicate that there is no
single address that can be given for the value of the address of the whole object.

Displaying
Fortran Module
Data

TotalView tries to locate all of the data associated with a given Fortran module
and provide a single display that contains all of it. For functions and subroutines
defined in the module, TotalView adds the full module data definition to the list
of modules displayed in the stack frame pane.

For functions that use a module it is often not possible to determine from the debug
information either that a module has been used, or what the true names of the
variables in the module were. In this case (depending on what debug information
is available), module variables either appear as local variables of the subroutine,
or a module appears on the list of modules in the stack frame pane that contains
(with appropriate renaming) only the variables used by the subroutine.

Alternatively, you can view a list of all of the modules of which TotalView is aware
by using the Fortran Modules Window (M) command from the
Function/File/Variable submenu. This window behaves like the Global
Variables window, so you can dive through an entry to display the actual module
data. See Figure 60.

Figure 60. Fortran Modules Window

Fortran module window

Dive on module name to
see data window
containing module
variables

Dive on module variable
to see data window with
more detail
TotalView User’s Guide 167

CHAPTER 7: Examining and Changing Data
Debugging
Fortran 90
Modules

In Fortran 90 or 95, you can place functions, subroutines, and variables inside
modules. These modules can then be USEd by other compilation units to include
the definitions from the module.

When modules are USEd, the names in the module become available in the using
compilation unit, unless they have been excluded by USE, ONLY, or renamed.
This means that from the Fortran source code you do not need to explicitly name
a module function or variable.

However when debugging in TotalView, you may want to view the source for a
specific function that exists in a module, and whose name is also used as a function
in other modules. Similarly, when looking at a stack backtrace, it is important to
know which of the functions has actually been called. To make this clear,
TotalView uses the syntax:

modulename`functionname

when it displays a function from a module. You can use this syntax explicitly in
the “Function or File (f)” command in the Function/File/Variable menu.

Fortran 90 also introduced the idea of a contained function that is only visible in
the scope of its parent and siblings. Once again, there can be many contained
functions in a program, all using the same name. TotalView uses a similar syntax
to disambiguate these functions. If the compiler mangled the function name for the
nested function, TotalView displays it with this syntax:

parentfunction()`containedfunction

If you give an ambiguous name for a function, then TotalView displays dialog
showing all of the possible matching functions. See “Finding the Source Code for
Functions” on page 116 for more information.

Note: SUNPro compiler users: it is not possible to find out which
modules exist in a program without reading all of the debug
information for the program. To display module data, you
must ensure that the debug information for a file that contains
the module definition or a module function has been read.
168 TotalView User’s Guide

Displaying Fortran Types
Within contained functions, all of the variables in the parent function are visible
and accessible via a static chain. If the compiler has passed on information about
the static chain, TotalView can access these variables in the same way as the
compiled code does, and they will be visible in data panes, and from evaluation
points or expressions. If the compiler does not report about the static chain, then
TotalView can find these up-level variables and display then in data panes, but you
will not be able to use them in evaluation points or expressions.

F90 User
Defined Type

A Fortran 90 user defined type is similar to a C structure. TotalView displays a
user defined type as type(name), which is the same syntax used in Fortran 90 to
create a user defined type. For example, a variable of type(sparse), declared as in
the following code fragment, appears in Figure 61.

type sparse

logical*1, pointer :: smask (:,:)
real, pointer :: sval (:)
character (20) :: heading

end type sparse

F90 Deferred
Shape Array
Type

Fortran90 allows you to define deferred shape arrays and pointers. The actual
bounds of the array are not determined until the array is allocated, the pointer is
assigned to, or, in the case of an assumed shape argument to a subroutine, the
subroutine is called. The type of deferred shape arrays is displayed by TotalView
as type(:), in the same way that such an array would be declared in Fortran.

Figure 61. Fortran 90 User Defined Type
TotalView User’s Guide 169

CHAPTER 7: Examining and Changing Data
When TotalView displays the data for a deferred shape arrays, it displays both the
type used in the definition of the variable, and the actual type that this instance of
the variable has. The actual type is not editable, since you can achieve the same
effect by editing the type.

The type of a deferred shape rank 2 array of REAL data with runtime lower bounds
of -1 and 2, and upper bounds of 5 and 10 is shown in the following example:

Type: real(:,:)
Actual Type: real(-1:5,2:10)

Slice: (:,:)

F90 Pointer
Type

A Fortran 90 pointer type allows you to point to scalar or array types. TotalView
displays pointer types as type,pointer, which is the syntax used in Fortran 90 to
create a pointer variable.

For example, a pointer to a rank 1 deferred shape array of real data will be
displayed in the variable window as:

Type: real(:),pointer

To view the data itself, you must dive on the value.

The value of the pointer is displayed as the address of the data to which the pointer
points. This address not necessarily the array element with the lowest address.

TotalView implicitly handles any slicing operations used to set up a pointer, or
assumed shape subroutine argument, so that the indices and values which it displays
in the variable window for such a variable are the same as you would see in the
Fortran code.

Note: With the IBM xlf compiler, TotalView cannot determine the
rank of the array from the debug information. In this case, the
type of a pointer to an array will appear as “type(...),pointer”.
The actual rank will be filled in correctly when you dive
through the pointer to look at the data.
170 TotalView User’s Guide

Displaying Fortran Types
For instance, in this code

integer, dimension(10), target :: ia
integer, dimension(:), pointer :: ip
do i = i,10

ia(i) = i
end do
ip => ia(10:1:-2)

after diving through the pointer value itself, ip displays shown in Figure 62.

This example also shows why the address displayed for the data pane is not that
of the base of the array. Since the stride in the array descriptor is negative,
succeeding elements of the array are at lower absolute addresses. The address
displayed is that of the array element with the lowest index (which may not be the
first displayed element if you used a slice to display the array with reversed indices).

Displaying
Large Arrays

TotalView can quickly display very large arrays in variable windows. If an array
overlaps nonexistent memory, the initial portion of the array is correctly formatted.
The array elements that fall within nonexistent memory, have “Bad Address”
displayed in the subscript.

Figure 62. F90 Pointer Value

Target array ia

Address of ip(1)

Pointer ip into array ia

Values reflect slice
TotalView User’s Guide 171

CHAPTER 7: Examining and Changing Data
Displaying Array Slices

TotalView can display subsections of arrays, which are called slices. Every
TotalView variable window that displays an array contains an additional Slice
field. You can edit this field to view subsections of your array. If the array has
more than one dimension, then you get the appropriate number of null slices, so,
for a C array declared

integer ia[10][20][5]

the initial slice will be [:][:][:].

For an F90 deferred shape array declared

integer, dimension (:,:) :: ia

the initial slice will be (:,:).

In other words, you get as many colons (:) as there are array dimensions. Initially,
the field contains either [:] for C arrays or (:) for Fortran arrays, which displays
the entire array.

Slice
Descriptions

A slice description consists of the following:

lower_bound:upper_bound:stride

This description specifies that TotalView should display every stride element of
the array, starting at the lower_bound and continuing through the upper_bound,
inclusive.

For example, if you specified a slice of [0:9:9] for a 10-element C array, TotalView
displays the first element and last element (the 9th element beyond the lower
bound).
172 TotalView User’s Guide

Displaying Array Slices
TotalView accepts array slices which are the same as those in Fortran 90, so the
slice [lb:ub:stride] represents the set of values of i generated by the append
statements in the following pseudo-code:

i = lb
if (stride > 0)

while (i <= ub)
append i
i = i + stride

else
while (i >= ub)
append i
i = i + stride

In addition, TotalView accepts a number of extensions to the slices Fortran 90
would accept, since we assume that you want to have some elements in the slice.

Therefore, TotalView will treat a slice

[lb : ub : stride]

where stride < 0 and ub > lb as though it was intended to be the slice

[ub : lb : stride]

and will reflect it as such in the slice display.

This extension also means that you can view a dimension with reversed indexing
by using the slice

[::-1]

In Fortran 90, you would have to explicitly give the upper and lower bounds of the
array to generate a suitable reverse indexed slice.

In the case where the stride of a slice is 1, you can specify the slice with just two
numbers separated by colons: the lower and upper bounds. For example, to display
a slice of [0:9:1], you can specify the following:

[0:9]

The slice [0:9] displays array elements 0 through 9, whereas the slice [4:6] displays
array elements 4 through 6.
TotalView User’s Guide 173

CHAPTER 7: Examining and Changing Data
If the stride is 1 and the lower and upper bound are the same number, you can
specify the slice with just a single number, which indicates both the lower and
upper bound. For example, to display a slice of [9:9:1], you can specify the
following:

[9]

The slice [9] displays element 9.

For multidimensional arrays, you can specify a slice for each dimension using the
following syntax:

C and C++ [slice][slice]…

Fortran (slice,slice,…)

Strides You can use the stride of a slice either to skip elements of an array or to invert the
order in which elements of an array are displayed.

For example, if you specify a slice of [::2] for a C or C++ array (with a default
lower bound of 0), TotalView displays only the even elements of the array: 0, 2,
4, and so on. However, if you specify this same slice for a Fortran array (with a
default lower bound of 1), TotalView displays only the odd elements of the array:
1, 3, 5, and so on. As an example of skipping elements in a multidimensional array,
you can specify a slice of (::9,::9) to display the four corners of a 10-element by
10-element Fortran array, as shown in Figure 63.

Note: The lower_bound, upper_bound, and stride portions of a slice
description must be constant values. Expressions are not
supported yet.

Figure 63. Slice Displaying the Four Corners of an Array
174 TotalView User’s Guide

Displaying Array Slices
To invert the order in which elements are displayed, you can specify a negative
number as the stride of a slice. If you specify a slice of (::–1), TotalView begins
with the upper bound of the array and displays the array in inverted order. For
example, if you specified this slice of (::–1) with a Fortran array of integer(10),
TotalView displays the following elements:

(10)
(9)
(8)
...

You can use a stride to combine inverse order with skipping elements. For example,
if you specify a slice of (::–2), TotalView begins with the upper bound of the array
and displays every other element until it reaches the lower bound of the array. For
example, if you specify this slice of (::–2) with a Fortran array of integer(10),
TotalView displays the following elements:

(10)
(8)
(6)
...

You can also combine inverse order and a limited extent to display a small section
of a large array. For example, if you specified a slice of (2:3,7::–1) with a Fortran
array of real*4(–1:5,2:10), Figure 64 shows the elements that are displayed by
TotalView:

As you can see in the figure, TotalView only shows in rows 2 and 3 of the array,
beginning with column 10 and concluding with column 7.

Figure 64. Fortran Array with Inverse Order and Limited Extent
TotalView User’s Guide 175

CHAPTER 7: Examining and Changing Data
Using Slices in
the Variable
Command

When you use the Variable (v) command to display a variable window, you can
include a slice expression as part of the variable name. Specifically, if you include
an array name followed by a set of slice descriptions in the variable dialog box,
TotalView initializes the slice field in the variable window to the slice descriptions
that you specified.

If you include an array name followed by a list of subscripts in the variable dialog
box, TotalView interprets the subscripts as a slice description rather than as a
request to display an individual value of the array. As a result, you can display
different values of the array by changing the slice expression.

For example, suppose that you have a 20-element by 10-element Fortran array
named array2, and you want to display element (5,5). Using the Variable (v)
command, you specify array2(5,5) in the dialog box, which sets the initial slice
to (5:5,5:5), as shown in Figure 65.

If desired, you can force TotalView to display a single value in a variable window
by enclosing the array name and list of subscripts (that is, the information normally
included in a slice expression) inside parentheses, such as (array2(5,5)). In this
case, the variable window just displays the type and value of the element and does
not show its array index.

Figure 65. Variable Window for array2
176 TotalView User’s Guide

Displaying a Variable in All Processes or Threads
Displaying a Variable in All Processes or
Threads

When you debug a parallel program that is running many instances of the same
executable, or a multithreaded program, it is often useful to view or update the
value of a variable in all of the processes (or threads) at once.

To display the value of a variable in all of the processes in a parallel program, first
bring up a data pane displaying the value of a variable in one of the processes.
Then you can use the Toggle Laminated Display (L) command from the data pane
menu to request that the pane display the value of the variable in all of the processes.
To display the value of a variable in all threads within a single process, use the
Toggle Thread Laminated Display (l) command. If you decide that you no longer
want the pane to be laminated, then you can use the same command to delaminate
it, and return it to being a normal data pane.

The data pane switches to “laminated” mode, and displays the value of the variable
in each process or thread. Figure 66 shows a display of a simple, scalar variable in
each of four processes of an MPI code. In the top window, all of the processes have
the variable in a matching stack frame, so the value is displayed for all of them. In
the bottom window, a corresponding variable cannot be found, so that information
is displayed in the data pane.

Figure 66. Laminated Scalar Variable

Laminated scalar

Laminated scalar with
missing call frames in some
processes
TotalView User’s Guide 177

CHAPTER 7: Examining and Changing Data
When looking for a matching stack frame to find the correct local variable to
display, TotalView matches frames from the outermost frame inwards, and
considers calls from different sites to be different, so in code like the following:

int recurse (int i, int depth)
{

if (i == 0)
return depth;

if (i&1)
recurse (i-1, depth+1);

else
recurse (i-3, depth+1);

}

The two calls to recurse generate stack frames that are not considered to match.

If the variables are at different addresses in the different processes or threads, then
the address field at the top of the pane displays (Multiple) and the actual addresses
are displayed with each data item, as shown in Figure 67.

TotalView also allows you to laminate arrays and structures. When you laminate
an array, each element in the array is displayed across all processors. As with a
normal data pane, you can use the slice to select elements to be displayed. Structures
are displayed to keep the individual structure elements together. Figure 68 shows
an example of a laminated array and a laminated structure. You can also laminate
an array of structures.

Figure 67. Laminated Variable at Different Addresses

Multiple address tag

Actual addresses
178 TotalView User’s Guide

Displaying a Variable in All Processes or Threads
Diving in a
Laminated Pane

 You can dive through pointers in a laminated data pane, and the dive will apply
to the appropriate pointer in each process or thread.

Editing a
Laminated
Variable

If you edit a value in a laminated data pane, then you will be asked whether you
want this update to apply to all of the processes or threads or only the one in which
you demonstrated the change. Updating a variable in all of the processes is an easy
way to turn on a global debug flag, for instance.

Visualizing a
Laminated Data
Pane

You can export data from a laminated data pane to the visualizer using the Visualize
command exactly as for a normal data pane. However the process (or thread) index
will form the first axis of the visualization, and therefore you must use one fewer
data dimension than you normally would. If you do not want the process/thread
axis to be significant to the visualization, then you can simply use a normal data
pane, since all of the data must necessarily be in one process.

Figure 68. Laminated Array and Structure

Laminated array

Laminated structure

Element [0] for each
of the processes

Structure elements for
one process
TotalView User’s Guide 179

CHAPTER 7: Examining and Changing Data
Visualizing Array Data

The TotalView Visualizer is part of a suite of software development tools for
debugging, analyzing and tuning the performance of programs. It works with the
TotalView debugger to create graphic images of array data in your programs. This
lets you see your data in one glance and quickly find problems with it as you debug
your programs.

The visualizer is implemented as a self-contained process. It can be launched
directly by TotalView to visualize data as you debug your programs. Alternatively,
you can run the visualizer from the command line to visualize data dumped to a
file in a previous TotalView session.

You interact with TotalView to choose what you want to visualize and when the
snapshot of your data should be grabbed. You interact with the visualizer to choose
how you would like your data to be displayed.

For information about running the TotalView Visualizer, see Chapter 9,
“Visualizing Data,” on page 231.
180 TotalView User’s Guide

Displaying Mutex Information
Displaying Mutex Information

A mutex is a mutual exclusion object that allows multiple threads to synchronize
access to shared resources. A mutex has two states: locked and unlocked. Once a
mutex has been locked by a thread, other threads attempting to lock it will block.
When the locking thread unlocks (releases) the mutex, one of the blocked threads
will acquire (lock) it and proceed.

The mutex information window contains a list of all mutual exclusions (mutexes)
known in this process. To get a mutex window click on the Mutex Info Window
command from the Process State Info submenu in the process window. See
Figure 69.

Note: The Mutex Information window is supported only on Digital
UNIX.

Figure 69. Mutex Info Window
TotalView User’s Guide 181

CHAPTER 7: Examining and Changing Data
For each mutex, TotalView displays the following information:

• ID. This is the sequence number assigned to this mutex by the threads
package. Diving into this field opens a data window containing a view of the
actual mutex data.

• Type. The type contains the raw mutex type number, along with a single-
character abbreviation of the type name. The following mutex types are
known to TotalView:

• (N) A normal mutex.

• (R) A recursive mutex.

• (E) An error-check mutex. Error-check mutexes contain additional
information for use in debugging, such as the thread ID of the locker.
During program development, you should probably use error-check
mutexes in place of normal mutexes, and only switch to the simpler
version when performance becomes an issue. The type of the mutex can
be set using the pthread_mutexattr_settype_np() call on the attribute
object before the mutex is initialized.

• Flags. Flags are a raw hex string containing the current mutex flags, along
with a text summary showing one-character abbreviations for each flag which
is set. The following mutex flags are known to TotalView:

• 0x8 (M) Metered. The mutex contains metering information.

• 0x4 (W) Waiters. One or more threads are waiting for this mutex. By
default, waiters are shown in red; their color is the same as the thread
error state flag color.

• 0x2 (L) Locked. The mutex is locked. By default, locked mutexes are
shown in blue; their color is the same as the thread stopped state flag
color.

• 0x1 (N) Name. This mutex has a name.

• Owner (Error-check mutexes only). If the mutex is locked, as indicated by
the L flag, this field displays the system tid of the locking thread. Diving or
selecting on this number causes TotalView to display the process window
for the locking thread. TotalView displays the same window if you dive or
select the thread's entry in the root window.
182 TotalView User’s Guide

Displaying Mutex Information
If threads are waiting for this mutex, their system tids will be shown in the
owner field, with one thread ID displayed for each line in the window. You
can open a process window for these waiting threads by diving or selecting
on its number.

• Address. The address of the mutex in memory. You can open a data window
containing a view of the actual mutex data by diving on this field. See
Figure 70.

• Name. If the mutex has a name, it is shown here.

Note: TotalView may not be able to obtain this information, in
which case it will not show blocked-thread lines.

Figure 70. Mutex Data Window
TotalView User’s Guide 183

CHAPTER 7: Examining and Changing Data
Displaying Condition Variable
Information

The window that displays the condition variables lists all the condition variables
known in this process.

To get a Condition Variables window, click on the Condition Variable Info
Window command in the Process State Info submenu of the process window. See
Figure 71.

For each condition variable, TotalView displays the following information:

• ID. The ID is the sequence number assigned to this condition variable by the
threads package. Diving into this field opens a data window containing a view
of the actual condition variable data.

• Flags. Flags are a raw hex string containing the current condition variable
flags, with a text summary showing one-character abbreviations for each flag
which is set. The following flags are known to TotalView:

• 0x8 (M)

Metered. This condition variable contains metering information.

Note: The Condition Variables window is supported only on Digital
UNIX.

Figure 71. Condition Variable Window
184 TotalView User’s Guide

Displaying Condition Variable Information
• 0x4 (W)

Waiters. One or more threads are waiting for this condition variable.
By default, this is shown in red; its color is the same as the thread error
state flag color.

• 0x2 (P)

Pending. A wakeup is pending for this condition variable. By default,
this is shown in blue; its color is the same as the thread stopped state
flag color.

• 0x1 (N)

Name. The condition variable has a name.

• Waiters. If threads are waiting for this condition variable, their system tids
will be shown in the Waiters field, one thread for each line, on the lines
following the condition variable. Diving or selecting entries in the list of
waiting threads will open windows for them.

• Mutex. This field has the ID of the mutex used to guard the condition variable.
Diving into this field opens a data window containing a view of the actual
guard mutex data, if the ID can be translated to an address. For the translation
to be possible, the guard mutex must be correctly initialized. That can be done
statically or by using an attributes object. See the mutex and condition
variable man pages for more information.

• Address. This field contains the address of the condition variable in memory.
Diving into the address field opens a data window containing a view of the
actual condition variable data.

• Name. If the condition variable has a name, it will be shown here.

Note: TotalView may not be able to obtain this information, in
which case no waiting threads will be shown.
TotalView User’s Guide 185

CHAPTER 7: Examining and Changing Data
186 TotalView User’s Guide

7

CHAPTER 8:

Setting Action Points
This chapter explains how to use action points. TotalView supports three kinds of
action points: breakpoints, process barrier breakpoints, and evaluation points. A
breakpoint stops execution of processes and threads that reach it. A process barrier
breakpoint holds each process that reaches it until all processes from the group
reach it. An evaluation point causes a code fragment to execute when it is reached.

In this chapter, you’ll learn how to:

• Set breakpoints

• Set evaluation points

• Set conditional breakpoints

• Patch programs

• Set process barrier breakpoints

• Choose between interpreting and compiling expressions

• Control action points

• Save action points in a file

• Evaluate expressions

• Write code fragments

• Write assembler code (Alpha Digital UNIX and AIX systems only)
TotalView User’s Guide 187

CHAPTER 8: Setting Action Points
Action Points

Actions points allow you to specify an action to be performed when a thread or
process reaches a source line or machine instruction in your program. TotalView
support the following types of action points:

• Breakpoints

Breakpoints are the simplest type of action point. When a thread or process
encounters a breakpoint during execution, it stops at the breakpoint along
with the other threads in the process. You can also arrange for other related
processes to stop when the breakpoint is hit.

• Process barrier breakpoints

Process barrier breakpoints are similar to simple breakpoints, but they useful
for synchronizing a group of processes in a multiprocess program. Process
barrier breakpoints work together with the TotalView hold and release
process feature.

• Evaluation points

Evaluation points allow you to specify a code fragment to be executed when
the thread or process reaches the evaluation point. Evaluation points can be
used in several different ways, including conditional breakpoints, thread -
specific breakpoints, countdown breakpoints, and patching code fragments
into and out of your program.

All of the different type of action points share some common properties:

• Action points can be set at a source line or machine instruction.

• Action points can be enabled or disabled independently, which allows you
to retain the action point definition, but remove it from your program.

• Action points can be shared across multiple processes, or set in individual
processes.

• Action points are apply to the process, so in a multithreaded process, it applies
to all of the threads.

• Action points are assigned unique action point ID numbers. They appear in
several places, including: the root window, the action points pane of the
process window, and the action points dialog box.
188 TotalView User’s Guide

Action Points
Each type of action point has its own symbol associated with it. Figure 72 shows
examples of STOP (breakpoint), BARR (process barrier breakpoint), and EVAL
(evaluation point) symbols, both enabled and disabled, and ASM (assembler-level
action point) symbol.

The ASM symbol indicates that there are one or more assembler-level action points
associated with the source line.

The following sections describe the different types of actions points in more detail.

Figure 72. Action Point Symbols

Breakpoint

Process barrier breakpoint

Evaluation point

Assembler-level action point

Disabled breakpoint

Disabled barrier breakpoint

Disabled evaluation point
TotalView User’s Guide 189

CHAPTER 8: Setting Action Points
Setting Breakpoints

The TotalView debugger offers several options for setting breakpoints. You can
set source-level breakpoints, machine-level breakpoints, and breakpoints that are
shared among all processes in multiprocess programs. You can also control whether
or not TotalView stops all processes in the program group when a single member
reaches a breakpoint.

Setting
Source-Level
Breakpoints

There are several ways to set source-level breakpoints in TotalView. Typically,
you set and clear breakpoints before you start a process. To set a source-level
breakpoint, select a boxed line number in the tag field of the process window. A
boxed line number indicates that the line generates executable code. A STOP sign,
shown in Figure 73, indicates that the breakpoint occurs before the source
statement is executed.

You can also set a breakpoint while a process is running by selecting a boxed line
number in the tag field of the process window. If you set the breakpoint while the
process is running, TotalView stops the process temporarily to insert the breakpoint
and then continues running it.

Selecting
Ambiguous
Source Lines

If you are using C++ templates, it is possible that a single source line could generate
multiple function instances. If you attempt to set a source-level breakpoint by
selecting a line number in a function template, and that line number has more than
one instantiation, TotalView will prompt you with an ambiguous source line
selection dialog box, as shown in Figure 74.

Note: Breakpoints apply to the entire process, not just to a single
thread. Any thread executing in the process could reach the
breakpoint, thus causing it to stop.

Figure 73. Breakpoint Symbol

Breakpoint Gridget
Boxed number
190 TotalView User’s Guide

Setting Breakpoints
Perform the following steps to resolve the ambiguity.

1. Select the set of functions to operate on by selecting:

• the All button to select all of the functions

• the None button to deselect all the functions

• individual checkboxes to select and deselect a function

2. Select the action to perform on the set selected functions by selecting the:

• Toggle radio button to toggle the state of the action points

• Enable radio button to enable the action points, or create breakpoints
or process barrier breakpoints for any that did not already exist

• Disable radio button to disable the action point

Figure 74. Ambiguous Source Line Selection Dialog Box

Function selection checkboxes

Function name

Icon for existing action
point, or gray box if none

Function specification when
only one is selected

Action to perform on selected
functions

Select/deselect all

File name and line number

Note: The function specification is automatically set to the currently
selected function when exactly one box is checked. Selecting
additional checkboxes clears this field.
TotalView User’s Guide 191

CHAPTER 8: Setting Action Points
• Clear radio button to delete default breakpoints or process barrier
breakpoints, and disable others

3. Select the OK button, or press Return to perform the action. If you hold down
the Shift key, the action performed will be for process barrier breakpoints.

Diving into
Ambiguous
Source Lines

Similar to selecting an ambiguous source line, if you dive on an ambiguous source
line, TotalView displays the ambiguous source line dive dialog box, shown in
Figure 75, before posting the action point options dialog box.

Perform the following steps to resolve the ambiguity:

1. Select the set of functions to operate on by selecting:

• the All button to select all of the functions

• the None button to deselect all the functions

Figure 75. Ambiguous Source Line Dive Dialog Box

Function selection checkboxes

Function name

Icon for existing action
point, or gray box if none

Function specification when
only one is selected

Select/deselect all

File name and line number
192 TotalView User’s Guide

Setting Breakpoints
• individual checkboxes to select and deselect a function

2. Select the OK button, or press Return to display the action point options dialog
box. Any changes made in the action point options dialog box will be applied
to the selected functions.

As with other action point function menus, you are allowed to specify multiple
functions. However, if you do, the source lines that are referenced must all contain
no action points, or contain action points of the same type. The reason for this is
that once the action points are selected, a standard action point options dialog box
appears, and the selections you make in this dialog box apply to all the action points
that you have selected.

Toggling
Breakpoints at
Locations

You can toggle a breakpoint at a specific function or source line number without
having to first find the function or source line in the source pane. To set a breakpoint
this way:

1. Issue the Breakpoint at Location (^B) command in the
STOP/BARR/EVAL/GIST submenu of the process window. The toggle
breakpoint dialog box appear as shown in Figure 76

2. Enter the name of the function or a source line number.

If you enter a the name of a function, the breakpoint will be toggled at the
first executable source line in the function you specified. If you enter a source
line number, the breakpoint will be toggled at the source line in the current
source file.

Note: The function specification is automatically set to the currently
selected function when exactly one box is checked. Selecting
additional checkboxes clears this field.

Figure 76. Toggle Breakpoint at Location Dialog Box
TotalView User’s Guide 193

CHAPTER 8: Setting Action Points
3. Select the OK button, or press Return. If you hold down the Shift key, this
command will perform toggle a process barrier breakpoint at this location.

The behavior of the Breakpoint at Location (^B) command depends on whether
there is already an action point at the selected location, and whether hold down the
Shift key when you select OK or press Return, as described in Table 13.

Table 13. Breakpoint at Location Actions

Location Content OK Action Shift-OK Action

Empty Create STOP Create BARR

STOP Delete/disable STOP Convert to BARR

BARR Delete/disable BARR Convert to STOP

EVAL Disable EVAL Disable EVAL
194 TotalView User’s Guide

Setting Breakpoints
Toggling
Breakpoints at
Ambiguous
Locations

If you give the Breakpoint at Location (^B) command an ambiguous function
name, TotalView prompts you with an ambiguous function dialog box, as shown
in Figure 77.

Perform the following steps to resolve the ambiguity:

1. Select the set of functions to operate on by selecting:

• the All button to select all of the functions

• the None button to deselect all the functions

• individual checkboxes to select and deselect a function

Figure 77. Ambiguous Function Name Dialog Box

Function selection checkboxes

Function name, file name,
and line number

Icon for existing action
point, or gray box if none

Function specification when
only one is selected

Action to perform on selected
functions

Select/deselect all

Note: The function specification is automatically set to the currently
selected function when exactly one box is checked. Selecting
additional checkboxes clears this field.
TotalView User’s Guide 195

CHAPTER 8: Setting Action Points
2. Select the action to perform on the set selected functions by selecting the:

• Toggle radio button to toggle the state of the action points

• Enable radio button to enable the action points, or create breakpoints
or process barrier breakpoints for any that did not already exist

• Disable radio button to disable the action point

• Clear radio button to delete default breakpoints or process barrier
breakpoints, and disable others

3. Select the OK button, or press Return. If you hold down the Shift key, the
action performed will be for process barrier breakpoints.

Setting
Machine-Level
Breakpoints

To set a machine-level breakpoint, you must first display assembler code or source
interleaved with assembler. (Refer to “Examining Source and Assembler Code”
on page 120 for information.)

Then you select the tag field that is opposite the appropriate instruction. The tag
field must contain a gridget, which indicates the line is the beginning of a machine
instruction. Since the instruction sets on some platforms support variable-length
instructions, you may see multiple lines associated with a single gridget. The stop
sign appears, indicating that the breakpoint occurs before the instruction is
executed.

Note: When the source pane displays source interleaved with
assembler, source statements are treated as comments. You
can set breakpoints on instructions, not source statements. If
you set a breakpoint on the first instruction after a source
statement, however, you actually create a source-level
breakpoint.

If you set machine-level breakpoints on one or more
instructions that are part of a single source line and then
display source code in the source pane, TotalView displays
an ASM sign (see Figure 72) on the line number. To see the
specific breakpoints, you must display assembler or
assembler interleaved with source code.
196 TotalView User’s Guide

Setting Breakpoints
After you set all desired breakpoints, you can start the process. When a process
reaches a breakpoint, TotalView does the following:

• Suspends the process

• Displays the PC symbol over the stop sign to indicate the PC currently points
to the breakpoint

• Displays “at breakpoint” in the title bar of the process window and other
windows

• Updates the stack trace panes, stack frame panes, and variable windows.

Thread-Specific
Breakpoints

TotalView implements thread-specific breakpoints through evaluation points in
the TotalView expression system. The expression system has several intrinsic
variables that allow a thread to retrieve its thread ID. For example, the following
shows how to set a breakpoint that stops the process only when thread 3 executes
the evaluation point:

/* Stop when thread 3 evaluates this expression. */
if ($tid == 3) $stop;

Breakpoints for
Multiple
Processes

In multiprocess programs, you can set breakpoints in the parent process and child
processes before you start the program and at any time during its execution. To do
this, you use the action point options dialog box, as shown in Figure 78. This dialog
box provides three checkboxes for process groups:

• Stop All Related Processes when Breakpoint Reached

If selected, stops all members of the program group when the breakpoint is
reached. Otherwise, only the process that reaches the breakpoint stops.

• Stop All Related Processes when Barrier Breakpoint Hit

If selected, stops all members of the program group when the barrier
breakpoint is reached. Otherwise, only the process that reaches the barrier
breakpoint stops.

• Share Action Point in All Related Processes

If selected, enables and disables the breakpoint in all members of the share
group at the same time. Otherwise, you enable and disable the breakpoint in
each share group member individually.
TotalView User’s Guide 197

CHAPTER 8: Setting Action Points
You can control the default setting of these checkboxes using X resources or
command line options. See Figure 78.

Refer to “totalview*stopAllRelatedProcessesWhenBreakpointHit: {true | false}”
on page 280,
“totalview*processBarrierStopAllRelatedProcessesWhenBreakpointHit: {true |
false}” on page 276, and “totalview*shareActionPointInAllRelatedProcesses:
{true | false}” on page 278 and “TotalView Command Syntax” on page 287.

In addition to the controls in the action point options dialog, you can write an
expression in the expression box to control the behavior of program group members
and share group members. Refer to “Writing Code Fragments” on page 218 for
more information.

Figure 78. Action Point Options Dialog Box

Stops members of
program group

Set breakpoint in
members of share group

Action point ID
198 TotalView User’s Guide

Setting Breakpoints
Breakpoint for
Programs that
fork()/execve()

You must link with the dbfork library to debug programs that call fork() and
execve(). See “Compiling Programs” on page 16.

Processes That Call
fork()

By default, breakpoints are shared by all processes in the share group, and when
any process reaches the breakpoint, TotalView stops all processes in the program
group.

To override these defaults:

1. Dive into the tag field to display the action point options dialog box.

2. Deselect these checkboxes: Stop All Related Processes when Breakpoint
Hit and Share Action Point in All Related Processes.

3. Select the OK button.

Processes That Call
execve()

Breakpoints that are shared by a parent and children with the same executable do
not apply to children with different executables. To set the breakpoints for children
that call execve():

1. Set the breakpoints and breakpoint options desired in the parent and the
children that do not call execve().

2. Start the multiprocess program by displaying the Go/Halt/Step/Next/Hold
submenu and selecting the Go Group (G) command. When the first child
calls execve(), a dialog box appears with the following message:

Process name has called exec (name),
Do you wish to stop it before it enters MAIN?

3. Answer Yes. TotalView opens a process window for the process. (If you
answer No, the program executes without allowing you to set breakpoints.)

4. Set the breakpoints desired for the process. Once you set the breakpoints for
the first child that uses this executable, the debugger does not prompt you
when other children call execve() to use this executable. Therefore, if you
don’t want to share the breakpoints among other children using the same
executable, dive into the breakpoints, and set the breakpoint options
appropriately.

5. Select the Go Group (G) command from the Go/Halt/Step/Next/Hold menu
to resume execution.
TotalView User’s Guide 199

CHAPTER 8: Setting Action Points
Example:
Multiprocess
Breakpoint

The following example program illustrates the different points at which you can
set breakpoints in multiprocess programs:

1 pid = fork();
2 if (pid == -1)
3 error ("fork failed");
4 else if (pid == 0)
5 children_play();
6 else
7 parents_work();

Table 14 shows the results of setting a breakpoint on different lines of the example.

Table 14. Setting Breakpoints in Multiprocess Programs

Line Number Result

1 Stops the parent process before it forks.

2 Stops both the parent and child processes (if
the child process was successfully created).

3 Stops the parent process if fork() failed.

5 Stops the child process.

7 Stops the parent process.
200 TotalView User’s Guide

Process Barrier Breakpoints
Process Barrier Breakpoints

A process barrier breakpoint (process barrier point) is a just like a simple
breakpoint, but it holds processes that reach the process barrier point. TotalView
holds each process until all the processes in the group reach the same process barrier
point. When the last process reaches the same barrier point, all processes in the
group are released.

Process Barrier
Breakpoint
States

Processes at a process barrier point are held or stopped, as follows:

• Held. A process that is held cannot resume execution until all the processes
in its group are at the process barrier point, or until you manually release it.
When held, the various “Go” and “Single-step” commands from the
Go/Halt/Stop/Next/Hold menu have no effect on held process.

• Stopped. When all the processes in the group reach the process barrier point,
TotalView automatically releases them. They remain stopped at the barrier
point until you take action on them.

You can manually release held processes by choosing Hold/Release Process (w)
or Release Group command from the Go/Halt/Stop/Next/Hold menu. When you
manually release a process, the “Go” and “Single-step” commands become
available again. You can use the Hold/Release Process (w) command again to
toggle the hold state of the process. See “Holding and Releasing Processes” on
page 128 for more information.

Setting a Process
Barrier
Breakpoint

You can set a process barrier breakpoint with the mouse or from the action points
dialog box.

• To set a process barrier breakpoint with the mouse, move the mouse to the
line number in the process window where you want to set the process barrier
point. Then press Shift-Select. A BARR sign appears. See Figure 72 on page
189.

• To set a process barrier breakpoint from the action point options dialog box,
dive on the line where you want to set the process barrier point. In the action
points options dialog box, click on the BARR sign, then click on OK. See
Figure 79.
TotalView User’s Guide 201

CHAPTER 8: Setting Action Points
When you set a process barrier point, TotalView places it in all the processes in
the group. TotalView insists that you create barrier breakpoints that are active in
the entire share group.

If you run one of the processes in the group and it hits the process barrier point,
you will see an H next to the process name in the root window and the word [Held]
in the process title bar in the main process window. Process barrier points are
always shared. See Figure 80.

Figure 79. Action Point Options Dialog Box

Process barrier
breakpoint

Process barrier
breakpoints must be
shared

Controls whether related
processes stop when hit
202 TotalView User’s Guide

Process Barrier Breakpoints
Releasing
Processes from
Process Barrier
Points

TotalView automatically releases processes from a process barrier point in the
following situations:

• A process hits that process barrier point after all other processes in the group
are already held at it

Figure 80. Process Barrier Breakpoint in Process and Root Windows

Held in process
window title bar

Hold symbol (H) in
root window

Action point ID

Action point ID
TotalView User’s Guide 203

CHAPTER 8: Setting Action Points
• You can create a new process barrier point, and every process in the group
is already stopped at the location of the new barrier. Normally, when you
create a new process barrier point TotalView holds any process which is
stopped at the barrier’s location. However, rather than holding all the
processes in this case, TotalView leaves them all not held.

Toggling
Between a
Breakpoint and
a Process
Barrier Point

You can convert an ordinary breakpoint to a process barrier point by moving the
cursor to the breakpoint and clicking Shift-Select. To convert a process barrier
point back to an ordinary breakpoint, move the cursor to the process barrier
breakpoint and use Shift-Select.

Plain select clears barrier points, just as it clears breakpoints.

Deleting a
Process Barrier
Point

You can delete a process barrier point from the action points dialog box or from
the process window.

• If the process barrier point was created with default settings, simply select
the BARR symbol in the source pane of the process window to delete it.
Otherwise, if some options have been set to non-default values, when you
select it TotalView just disables it. If you want to re-enable it with the same
options you had previously, select it again.

• To delete a process barrier point, or other action point, which has non-default
options, dive on the action point symbol in the source pane of the process
window to display the action points dialog box. In the dialog box, click Delete.

Changes when
Setting and
Clearing a
Barrier Point

Setting a process barrier point at the current PC for a stopped process holds the
process there, unless all other processes in its group are at that same PC. If they
are, TotalView does not hold them. They are the same as if they were stopped at
an ordinary breakpoint.

All processes which are held and which have threads at the process barrier point
are released when you clear the barrier point. They remain stopped, but are no
longer held. You can clear the barrier breakpoint in the action point options dialog
box by clicking on Clear at the bottom of the action points dialog box.

Note: Shift-Select on an Eval point does not convert it to a process
barrier point.
204 TotalView User’s Guide

Defining Evaluation Points
Defining Evaluation Points

You can define evaluation points, points in your program where TotalView
evaluates a code fragment. The fragment can include special commands to stop a
process and its relatives. Thus, you can use evaluation points to set conditional
breakpoints of varying complexity. You can also use evaluation points to test
potential fixes for your program.

You can define an evaluation point at any source line that generates executable
code (marked with boxed line number in the tag field). If you display assembler
or source interleaved with assembler in the process window, you can also define
evaluation points on machine-level instructions.

As part of defining an evaluation point, you provide the code fragment to be
evaluated. You can write the code fragment in C, Fortran, or Assembler.

At each evaluation point, the code fragment in the evaluation point is executed
before the code on that line. Typically, the program then executes the program
instruction at which the evaluation point is set. But your code fragment can modify
this behavior:

• It can include a branching instruction (such as GOTO in C or Fortran). The
instruction can transfer control to a different point in the target program,
enabling you to code and test program patches.

• It can contain a built-in statement. These special TotalView statements define
breakpoints, process barrier points, and countdown breakpoints within the
code fragment. By including them within other statements that you code, you
can define conditional breakpoints. For more information on these
statements, refer to Table 17, “Built-In Statements That Can Be Used in
Expressions,” on page 219.

Note: We recommend that you stop a process before setting an
evaluation point. This ensures that the evaluation point is set
in a stable context in the program.

Note: Assembler support is currently available only on the Alpha
Digital UNIX and AIX operating systems. Compiled
expressions must be enabled to use assembler constructs.
TotalView User’s Guide 205

CHAPTER 8: Setting Action Points
TotalView evaluates code fragments in the context of the target program. This
means that you can refer to program variables and pass control to points in the
target program.

Setting
Evaluation
Points

To set an evaluation point:

1. Dive into the tag field for an instruction in the process window. TotalView
displays the action point options dialog box.

2. Select the EVAL (Evaluate Expression) button.

3. Select the button (if it’s not already selected) for the language in which you
will code the fragment.

4. Select the evaluation text box and enter the code fragment to be evaluated.
Use the field editor commands as required. For information on supported C,
Fortran, and Assembler language constructs, refer to “Writing Code
Fragments” on page 218.

5. For multiprocess programs, decide whether to share the evaluation point
among all processes in the program’s share group. By default, the Share
Action Point in All Related Processes is selected for multiprocess programs,
but you can override this by deselecting the checkbox.

6. Select the OK button to confirm your changes. If the code fragment has an
error, TotalView displays an error message. Otherwise, TotalView processes
the code, closes the dialog box, and places an EVAL icon in the tag field.

Note: For complete information on what you can include in code
fragments, refer to “Writing Code Fragments” on page 218.

Evaluation points modify only the processes that you are
debugging. They do not permanently modify the source
program or create a permanent patch in the executable. If you
save the evaluation points for a program, however, TotalView
reapplies them whenever you start a debugging session for
that program. To save your evaluation points, refer to “Saving
Action Points in a File” on page 215.
206 TotalView User’s Guide

Defining Evaluation Points
Setting
Conditional
Breakpoints

To set a conditional breakpoint, complete steps 1 to 4 of “Setting Evaluation Points”
on page 206. Here are some examples of conditional breakpoints and the code
fragments that you would need to supply in step 4:

• To define a breakpoint that is reached whenever a variable i is greater than
20 but less than 25:

if (i > 20 && i < 25)
$stop;

• To define a breakpoint that is reached every 10th time the $count statement
is executed:

$count 10

• To define a breakpoint with a more complex expression, consider this one:

$count i * 2

When the variable i equals 4, the process stops the 8th time it executes the
$count statement. After the process stops, the expression is reevaluated. If i
now equals 5, the next stop occurs after the process executes the $count
statement 10 more times.

Then, complete steps 5 and 6 of “Setting Evaluation Points” on page 206.

For complete descriptions of the $stop and $count statements, refer to “Built-In
Statements” on page 219.

Patching
Programs

You can use expressions in evaluation points to patch your code. Specifically, you
can use the goto (C) and GOTO (Fortran) statements to jump to another point in
your program’s execution.

You can patch programs in two ways:

• You can patch out pieces of code so they are not executed by the program.

• You can patch in new pieces of code to be executed by the program.

In many cases, you correct an error in a program, so you need to use both types of
patching. You patch out the incorrect lines of code and patch in the corrections.
TotalView User’s Guide 207

CHAPTER 8: Setting Action Points
Conditionally
Patching Out Code

For example, suppose a section of your C program dereferences a null pointer:

1 int check_for_error (int *error_ptr)
2 {
3 *error_ptr = global_error;
4 global_error = 0;
5 return (global_error != 0);
6 }

In this example, the caller of the check_for_error function assumes that passing
0 as the value of error_ptr is allowed. The code should allow null values of
error_ptr, but line 3 dereferences a null pointer.

To correct this error, you can patch in code that checks for a null pointer. To do
so, you set an evaluation point on line 3 and specify the following code fragment
in the evaluation point:

if (error_ptr == 0) goto 4;

If the value of error_ptr is null, line 3 is not executed.

Patching In a
Function Call

As an alternative, you can patch in a printf statement that displays the value of
global_error. To do so, you create an evaluation point on line 4 and specify the
following code fragment:

printf ("global_error is %d\n", global_error);

In this case, the code fragment is executed before the code on line 4, that is, before
global_error is set to 0.

Correcting Code In this final example, there is a coding error—the maximum value is returned
instead of the minimum value:

1 int minimum (int a, int b)
2 {
3 int result; /* Return the minimum */
4 if (a < b)
5 result = b;
6 else
7 result = a;
8 return (result);
9 }
208 TotalView User’s Guide

Defining Evaluation Points
To correct this error, you can set an evaluation point on line 4 and specify the
following code fragment to correct the program’s if statement.

if (a < b) goto 7; else goto 5;

Interpreted vs.
Compiled
Expressions

On most platforms, TotalView executes interpreted expressions. TotalView can
also execute compiled expressions on the Alpha Digital UNIX and AIX platforms.
On these platforms, compiled expressions are enabled by default.

You can enable or disable compiled expressions using Xresources or command-
line options. Refer to “totalview*compileExpressions: {true | false}” on page 267.
See Appendix B, “Operating Systems,” on page 321 to find out how TotalView
handles expressions on specific platforms.

Interpreted
expressions

• TotalView sets a breakpoint in your code and executes the evaluation point.
Since TotalView is executing the expression, interpreted expressions run
slower than compiled expressions. With multiprocess programs, interpreted
expressions can run more slowly because processes may be waiting serially
for the debugger to execute the expression. With remote debugging,
interpreted expressions can run more slowly because the debugger, not the
debugger server (tvdsvr), is executing the expression.

• If the expression contains $stop or $count, TotalView terminates the
evaluation of the expression and stops the process. Thus, if you use $stop or
$count, they should be at the end of your expression because TotalView stops
evaluating the expression at that point.

Compiled
expressions

• TotalView compiles, links and patches the expression into the target process.
To do this, TotalView replaces an instruction with a branch instruction,
relocates the original instruction, and appends the expression. Then the code
is executed by the target process, so conditional breakpoints can execute very
fast.

• If the expression contains $stop or $count, TotalView stops the execution of
the process in the compiled expression, so you can single step through it and
continue executing the expression as you would the rest of your code. See
Figure 81.
TotalView User’s Guide 209

CHAPTER 8: Setting Action Points
Defining and Using Event Points

TotalView does not currently support placing event points in your program.

Figure 81. Stopped Execution of Compiled Expression
210 TotalView User’s Guide

Controlling Action Points
Controlling Action Points

TotalView provides three methods of controlling action points: the action points
window, the action points pane in the process window and the action point options
dialog box.

Displaying the
Action Points
Window

The action points window displays a summary of the action points that are set in
your program. To display this window, display the STOP/BARR/EVAL/GIST
submenu and select the Open Action Points Window (b) command. The action
points window appears, as shown in Figure 82.

If you dive into an action point in the action point list, TotalView displays the line
of source code containing the action point in the source code pane of the process
window.

Figure 82. Action Points Window

Note: The list of action points displayed in the action points window
is the same as shown in the action points pane in the process
window.

Type of
action point

Line number

Routine name

Source

Action point ID

Tip: Action points make it easier to navigate your source files.
You can define disabled breakpoints in your code and dive
into the breakpoint to quickly display the corresponding
source code in the process window. Thus, breakpoints can act
like bookmarks in your program.
TotalView User’s Guide 211

CHAPTER 8: Setting Action Points
Displaying the
Action Point
Options Dialog

The action point options dialog box lets you set and control an action point in your
program. To display this dialog box, dive into the tag field beside a source line or
an instruction. TotalView displays the dialog box, illustrated in Figure 83.

Commands for
Controlling
Action Points

You can take the following actions to control the use of action points in your
program:

Delete Permanently removes the action point.

Disable Keeps the definition for the action point but ignores it
during execution.

Enable Makes the action point active during execution.

Figure 83. Action Point Options Dialog Box

Applies
changes

Cancels changes

Deletes action
point

Reverts to
default settings

Action point ID
212 TotalView User’s Guide

Controlling Action Points
Suppress Keeps the definition for the action point, ignores it
during execution, and prevents creation of additional
action points.

Unsuppress Makes the action point active during execution and
allows creation of additional action points.

Table 15 shows how to control action points with the process window, action point
options dialog, and the action points window.

Table 15. Clearing, Disabling, Enabling, Suppressing, and Unsuppressing Action Points

Action
Breakpoints and Process
Barrier Breakpoints Evaluation Point Event Point

Deleting Select the STOP or BARR sign
in the tag field.
Or
Select the Delete button in the
action point options dialog.

Select the Delete button in the
action point options dialog.

Note: Event points
are not currently
supported.

To clear all breakpoints, process barrier points, and evaluation
points, go to the process window or action points window, display
the STOP/BARR/EVAL/GIST submenu, and select the Clear
All STOP, BARR, & EVAL command.

Disabling1 Deselect Action Point
Enabled in the action point
options dialog.
Or
Select the STOP or BARR sign
in the action points window.

Select the EVAL sign in the tag
field.
Or
Deselect Action Point
Enabled in the action point
options dialog.
Or
Select the EVAL sign in the
action points window.

Enabling Select the dimmed STOP, BARR or EVAL sign in the process or
action points window.
Or
Select Action Point Enabled in the action point options dialog.
TotalView User’s Guide 213

CHAPTER 8: Setting Action Points
1. Disabling an action point does not clear it. TotalView remembers that an action point exists for the line, but
ignores it as long as it is disabled. For evaluation points, TotalView keeps the definition in case you want to use
it again later.

2. When you suppress action points, you disable them. In addition, you cannot update any existing action points
or create new ones.

Suppressing2 To suppress all action points, display the
STOP/BARR/EVAL/GIST submenu and select the Suppress
All Action Points (^D) command.

Unsuppressing To unsuppress all action points, display the
STOP/BARR/EVAL/GIST submenu and select the Unsuppress
All Action Points (^E) command.

Table 15. Clearing, Disabling, Enabling, Suppressing, and Unsuppressing Action Points (Continued)

Action
Breakpoints and Process
Barrier Breakpoints Evaluation Point Event Point
214 TotalView User’s Guide

Saving Action Points in a File
Saving Action Points in a File

You can save the action points for each program you debug in a file. By doing so,
you will not have to set action points each time you start a new TotalView session.
When you save action points, TotalView names the file
program.TVD.breakpoints, where program is the name of your program.

Tip: To save action points, display the STOP/BARR/EVAL/GIST submenu
and select the Save All Action Points command from the process
window. The debugger places the action points file in the same directory
as your program.
If you know that you always want to save your action points before you
exit from TotalView, you can set an X Window System resource to do
this. Refer to “totalview*autoSaveBreakpoints: {true | false}” on
page 265. Alternatively, you can use the –sb option each time you start
the debugger, as described in “TotalView Command Syntax” on
page 287.

Once you create an action points file, TotalView automatically loads the file each
time you invoke the debugger. TotalView uses the same search paths as it does to
locate source files. If you prefer to suppress this behavior, you can set an X resource
(see “totalview*autoLoadBreakpoints: {true | false}” on page 265) or use the –nlb
option each time you start the debugger (see “TotalView Command Syntax” on
page 287).

Evaluating Expressions

In the TotalView debugger, you can open a window for evaluating expressions in
the context of a particular process and evaluate expressions in C, Fortran, or
Assembler.

Note: Not all platforms support the use of Assembler constructs;
see Appendix C, “Architectures,” on page 333 for details.
TotalView User’s Guide 215

CHAPTER 8: Setting Action Points
To evaluate an expression:

1. Make sure that a process is created, running, or stopped in the process
window.

2. Select the Open Expression Window (e) command from the process
window. An expression evaluation window appears.

3. Select the button (if it is not already selected) for the language in which you
will write the code.

4. Select the Expression box and enter the code fragments to be evaluated using
the field editor commands. For a description of the supported language
constructs, see “Writing Code Fragments” on page 218.

The last statement in the code fragment can be a free-standing expression;
you don’t have to assign the expression’s return value to a variable. Figure 84
shows a sample expression.

5. Select the Eval button. If TotalView finds an error, it positions the cursor on
the incorrect line and displays an error message. Otherwise, it interprets (or
on some platforms, compiles and executes) the code, and displays the value
of the last expression in the Expression box in the Value field.

Figure 84. Sample Expression Window

Language

Result value
216 TotalView User’s Guide

Evaluating Expressions
While the code is being executed, you can’t modify anything in the window
because it is suspended. If execution takes a long time, notice that TotalView
displays diagonal lines across the window, indicating that the window is
temporarily inaccessible.

Since code fragments are evaluated in the context of the target process, the
stack variables are evaluated according to the currently selected stack frame.
If the fragment reaches a breakpoint (or stops for any other reason), the
expression window remains suspended. Assignment statements can affect the
target process because they can change the value of a variable in the target
process.

You can use the expression window in many different ways, but here are two
examples:

• Expressions can contain loops, so you could use a for loop to search an array
of structures for the entry containing a particular field set to a certain value.
In this case, you use the loop index at which the value is found as the last
expression in the expression evaluation window.

• You can call subroutines from the expression window, so you could test and
debug a single routine in your program without building a test program to
call the routine.

Once you have selected and edited an expression in the window, you cannot use a
keyboard equivalent (q) to exit from the window because the field editor is still
active. To exit, display the menu and select the Close Window command or press
Shift-Return.
TotalView User’s Guide 217

CHAPTER 8: Setting Action Points
Writing Code Fragments

You can use code fragments in evaluation points and in the expression evaluation
window. This section describes the intrinsic variables, built-in statements and
language constructs supported by TotalView.

Intrinsic
Variables

The TotalView expression system supports built-in variables that allow you to
access special thread and process values. All of the variables are of type 32-bit
integer, which is type <int> or <long> on most platforms. The variables are not
lvalues, so you cannot assign to them or take their addresses. Table 16 lists the
intrinsic variable names and their meanings.

Intrinsic variables allow you to create thread specific breakpoints from the
expression system. For example, using the $tid intrinsic variable and the $stop
built-in operation, you can create a thread specific breakpoint as follows:

Table 16. Intrinsic Variables

Name Meaning

$tid Returns the TotalView-assigned thread ID.
When referenced from a process, generates an
error.

$systid Returns the system-assigned thread ID. When
referenced from a process, generates an error.

$pid Returns the process ID.

$nid Returns the node ID.

$clid Returns the cluster ID.

$duid Returns the TotalView-assigned Debugger
Unique ID (DUID).

$processduid Returns the DUID of the process.

Note: $nid, $clid, $duid, and $processduid are implemented for
interpreted expressions only.
218 TotalView User’s Guide

Writing Code Fragments
if ($tid == 3)
$stop;

This would cause TotalView to stop the process only if thread 3 evaluated the
expression. You can also create complex expressions using intrinsic variables:

if ($pid != 34 && $tid > 7)
printf (“Hello from %d.%d\n”, $pid, $tid);

Built-In
Statements

TotalView provides a set of built-in statements that you can use when writing code
fragments. The statements are available in all languages, and are shown in Table 17.

Table 17. Built-In Statements That Can Be Used in Expressions

Statement Use

$stopthread Sets a thread-level breakpoint. The thread that executes this
statement stops, but all other threads in the process continue
to execute. If the target system does not support asynchronous
stop, this executes as a $stopprocess.

$stop
$stopprocess

Sets a process-level breakpoint. The process that executes
this statement stops, but other processes in the program group
continue to execute.

$stopall Sets a program-group-level breakpoint. All processes in the
program group stop when any thread or process in the group
executes this statement.

$countthread expression Sets a thread-level countdown breakpoint. When any thread
in a process executes this statement for the number of times
specified by expression1, it stops. The other threads in the
process continue to execute. If the target system does not
support asynchronous stop, this executes as a $countprocess.

$count expression
$countprocess expression

Sets a process-level countdown breakpoint. When any thread
in a process executes this statement for the number of times
specified by expression, the process stops. The other
processes in the program group continue to execute.
TotalView User’s Guide 219

CHAPTER 8: Setting Action Points
1. A thread evaluates expression when it executes the $count statement for the first time, and it must
evaluate to a positive integer. A thread reevaluates $count only when it results in a breakpoint. Then,
the process’ internal counter for the breakpoint is reset to the value of expression. The internal counter
is stored in the process and shared by all threads in that process.

$countall expression Sets a program-group-level countdown breakpoint. All
processes in the program group stop when any process in the
group executes this statement for the number of times
specified by expression.

$hold
$holdprocess

Holds the current process. If all other processes in the group
are already held in breakpoint state at this eval point, then all
will be released. If other processes in the group are running,
they continue to run.

$holdstopall
$holdprocessstopall

Exactly like $hold, except any processes in the group which
are running are stopped. Note that the other processes in the
group are not automatically held by this call -- they are just
stopped.

$holdthread Freezes the current thread leaving other threads running. See
(later sections) for more information on threads.

$holdthreadstop
$holdthreadstopprocess

Exactly like $holdthread except it stops the process. The
other processes in the group are left running.

$holdthreadstopall Exactly like $holdthreadstop except it stops the entire group.

$visualize(expression[,slice]) Visualizes the data specified by expression and modified by
the optional slice. Expression and slice must be written in the
syntax of the code fragment’s language. The expression can
be any valid expression that yields a data-set (after
modification by slice) that can be visualized. The slice is a
quoted string containing a slice expression. For more
information on how to use $visualize in an expression, see
“Visualizing Data in Expressions” on page 239.

Table 17. Built-In Statements That Can Be Used in Expressions (Continued)

Statement Use
220 TotalView User’s Guide

Writing Code Fragments
C Constructs
Supported

When writing code fragments in C, keep these guidelines in mind.

Syntax • C-style (/* comment */) and C++-style (// comment) comments are permitted.
For example:

// This code fragment creates a temporary patch
i = i + 2; /* Add two to i */

• Semicolons can be omitted when no ambiguity would result.

• Dollar signs ($) in identifiers are permitted.

Data Types and
Declarations

• Data types permitted: char, short, int, float, double, and pointers to any
primitive type or any named type in the target program.

• Only simple declarations are permitted. The struct, union, and array
declarations are not permitted.

• References to variables of any type in the target program are permitted.

• Unmodified variable declarations are considered local. References to them
override references to similarly named global variables and other variables
in the target program.

• (Compiled evaluation points only) The global declaration makes a variable
available to other evaluation points and expression windows in the target
process.

• (Compiled evaluation points only) The extern declaration references a global
variable that was or will be defined elsewhere. If the global variable has not
yet been defined, TotalView displays a warning.

• Static variables are local and persist even after an evaluation point has been
evaluated.

• For static and global variables, expressions that initialize data as part of the
variable declaration are performed only the first time the code fragment is
evaluated. Local variables are initialized each time the code fragment is
evaluated.

Statements • Permitted statements: assignment, break, continue, if/else structures, for,
goto, and while.
TotalView User’s Guide 221

CHAPTER 8: Setting Action Points
• With the goto statement, you can define and branch to symbolic labels. These
labels are considered local to the window. As an extension, you can also refer
to a line number in the target program. This line number refers to the tag field
number of the source code line. Here’s a goto statement that causes the
program to branch to source line number 432 of the target program:

goto 432;

• Function calls are permitted, but structures cannot be passed to a function.

• Type casting is permitted.

• All operators are permitted, with these limitations:

• The conditional operator ?: is not supported.

• The sizeof operator can be used for variables, but not data types.

• The (type) operator cannot cast to fixed-dimension arrays using C cast
syntax.

Fortran
Constructs
Supported

When writing code fragments in Fortran, keep these guidelines in mind.

Syntax • Syntax is free-form. No column rules apply.

• One statement is allowed per line, and one line is allowed per statement.

• The space character is significant and sometimes required. (Some Fortran 77
compilers ignore all space characters, wherever they are coded.) For example:

Valid Invalid

DO 100 I=1,10 DO100I=1,10
CALL RINGBELL CALL RING BELL
X .EQ. 1 X.EQ.1

GOTO, GO TO, ENDIF, and END IF are all allowed. But ELSEIF is not;
use ELSE IF.

• Comment lines can be defined in several formats. For example:

C I=I+1
222 TotalView User’s Guide

Writing Code Fragments
/*
I=I+1
J=J+1
ARRAY1(I,J)= I * J
*/

Data Types and
Declarations

• Data types permitted: INTEGER (assumed to be long), REAL, DOUBLE
PRECISION, and COMPLEX.

• Implied data types are not permitted.

• Only simple declarations are permitted. The COMMON, BLOCK DATA,
EQUIVALENCE, STRUCTURE, RECORD, UNION, and array
declarations are not permitted.

• References to variables of any type in the target program are permitted.

Statements • Permitted statements: assignment, CALL (to subroutines, functions, and all
intrinsic functions except CHARACTER functions in the target program),
CONTINUE, DO, GOTO, IF (including block IF, ENDIF, ELSE, and ELSE
IF), and RETURN (but not alternate RETURN).

• As an extension to the GOTO statement, you can refer to a line number in
the target program. This line number refers to the tag field number of the
source code line. For example, this GOTO statement causes the program to
branch to source line number 432 of the target program:

 GOTO $432;

The dollar sign is required before the line number to distinguish the tag field
number from a statement label.

• All expression operators are supported except CHARACTER operators and
the logical operators .EQV., .NEQV., and .XOR..

• Subroutine function and entry definitions are not permitted.

• Fortran 90 array syntax is not supported.

• Fortran 90 pointer assignment (the => operator) is not supported.

• Calling Fortran 90 functions which require assumed shape array arguments
is not supported.
TotalView User’s Guide 223

CHAPTER 8: Setting Action Points
Writing
Assembler Code

On Alpha Digital UNIX and RS/6000 IBM AIX operating systems, TotalView
supports the use of assembler code in EVAL points, conditional breakpoints, and
the expression window.

To indicate that an expression in the breakpoint or expression windows is an
assembler expression, click on the ASM button in the expression window as shown
in Figure 85.

Assembler expressions are written in the TotalView Assembler Language. In the
TotalView Assembler Language, instructions are written identically to the native
assembler language, but the operators available to construct expressions in
instruction operands and the set of available pseudo-operators is common across
all architectures.

Note: If you want to use assembler constructs, you must enable
compiled expressions. See “Interpreted vs. Compiled
Expressions” on page 209 for instructions.

Figure 85. ASM Button in Expression Window

Assembler

ASM button
224 TotalView User’s Guide

Writing Code Fragments
The TotalView Assembler accepts instructions using the same mnemonics
recognized by the native assembler and recognizes the same names for registers
that native assemblers recognize. Some architectures provide extended mnemonics
that do not correspond exactly with machine instructions. Normally, these extended
mnemonics represent important, special cases of instructions, or provide for
assembling short, commonly used sequences of instructions. The TotalView
Assembler recognizes such extended mnemonics as long as they meet both of the
following criterion:

• They assemble to exactly one instruction, and

• The relationship between the operands of the extended mnemonics and the
fields in the assembled instruction code is a simple one-to-one
correspondence

In TotalView Assembler Language, labels are indicated as name:, appearing at the
beginning of a line. Labels may appear alone on a line. Symbols available for use
include any labels defined in the assembler expression and all program symbols.

The set of operators available for use in the TotalView Assembler are indicated in
Table 18.

Table 18. TotalView Assembler Operators

Operators Definition

hi16 (expr) Low 16 bits of operand expr

lo16 (expr) High 16 bits of operand expr

hi32 (expr) High 32 bits of operand expr

lo32 (expr) Low 32 bits of operand expr

“text” Text string, 1-4 characters long, is
right justified in a 32-bit word

+ Plus

– Minus (also unary)

* Times

/ Quotient
TotalView User’s Guide 225

CHAPTER 8: Setting Action Points
The set of pseudo-operations available for use in the TotalView Assembler are
listed in Table 19:

Remainder

& Bitwise and

^ Bitwise xor

! Bitwise or not (also unary - bitwise
not)

| Bitwise or

<< Left shift

>> Right shift

(expr) Grouping

Table 18. TotalView Assembler Operators (Continued)

Operators Definition

Table 19. TotalView Assembler Pseudo Ops

Pseudo Ops Definition

$debug [0 | 1] Internal debugging option.
With no operand, toggle debugging;
0 => turn debugging off;
1 => turn debugging on

$ptree Internal debugging option.
Print assembler tree

$stop
$stopprocess

Stop the process

$stopall Stop the program group

$stopthread Stop the thread
226 TotalView User’s Guide

Writing Code Fragments
$hold
$holdprocess

Hold the process

$holdstopall
$holdprocessstopall

Hold the process and stop the program
group

$holdthread Hold the thread

$holdthreadstop
$holdthreadstopprocess

Hold the thread and stop process

$holdthreadstopall Hold the thread and stop the program
group

$long_branch expr Branch to location expr, using a single
instruction in an architecture
independent way, without requiring the
use of any registers

align expr [, expr] Align location counter to an operand 1
alignment; use operand 2 (or zero) as the
fill value for skipped bytes

byte expr [, expr] … Place expr values into a series of bytes

half expr [, expr] … Place expr values into a series of 16 bit
words

word expr [, expr] … Place expr values into a series of 32 bit
words

quad expr [, expr] … Place expr values into a series of 64 bit
words

float expr [, expr] … Place expr values into a series of floats

double expr [, expr] … Place expr values into a series of doubles

string string Place string into storage

Table 19. TotalView Assembler Pseudo Ops (Continued)

Pseudo Ops Definition
TotalView User’s Guide 227

CHAPTER 8: Setting Action Points
ascii string Same as string

asciz string Zero terminated string

zero expr Fill expr bytes with zeros

fill expr , expr , expr Fill storage with operand 1 objects of size
operand 2, filled with value operand 3

org expr [, expr] Set location counter to operand 1 use
operand 2 (or zero) to fill skipped bytes

def name,expr Define a symbol with expr as it's value

name=expr Same as def name,expr

lsym name,expr Same as def name,expr but allows
redefinition of a previously defined name

bss name,expr[,expr] Define name to represent operand 2 bytes
of storage in the bss section with
alignment operand; default alignment
depends on the size:
if size >= 8 then 8 else
if size >= 4 then 4 else
if size >= 2 then 2 else 1

comm name,expr Define name to represent expr bytes of
storage in the bss section; name is
declared global; alignment is as in bss
without an alignment argument

lcomm name,expr[,expr] Identical to bss

global name Declare name as global

text Assemble code into text section (code)

data Assemble code into data section (data)

Table 19. TotalView Assembler Pseudo Ops (Continued)

Pseudo Ops Definition
228 TotalView User’s Guide

Writing Code Fragments
equiv name,name Make operand 1 be an abbreviation for
operand 2

Table 19. TotalView Assembler Pseudo Ops (Continued)

Pseudo Ops Definition
TotalView User’s Guide 229

CHAPTER 8: Setting Action Points
230 TotalView User’s Guide

8

CHAPTER 9:

Visualizing Data
The TotalView Visualizer is part of a suite of software development tools for
debugging, analyzing, and tuning the performance of programs. It works with the
TotalView debugger to create graphic images of array data in your programs. This
lets you see your data graphically as you debug your programs.

The visualizer is implemented as a self-contained process. It can be launched
directly by TotalView to visualize data as you debug your programs. Alternatively,
you can run the visualizer from the command line to visualize data dumped to a
file in a previous TotalView session.

You interact with TotalView to choose what you want to visualize and when the
snapshot of your data should be grabbed. You interact with the visualizer to choose
how you would like your data to be displayed.

This chapter explains how to use the Visualizer with TotalView to visualize array
data. In this chapter, you will learn:

• How the visualizer works

• Launching the Visualizer from TotalView

• Types of data that TotalView can visualize

• Visualizing data from the TotalView variable window

• Visualizing data in expressions at breakpoints and in the expression window

• What the Visualizer’s windows do

• Changing settings from the directory window

Note: The TotalView Visualizer is not available on all platforms.
TotalView User’s Guide 231

CHAPTER 9: Visualizing Data
• Data-set formatting for the visualizer

• Methods of visualization

• Changing displays of data

• Manipulating displays of data

• Launching the Visualizer from the command line

• Launching the Visualizer from a third party debugger

• Adapting third party visualizers to TotalView

How the
Visualizer
Works

There are two sides to using the TotalView Visualizer; extracting data from the
program being debugged, and displaying the data graphically. The TotalView
debugger handles the first of these, extracting the data and marshaling it into a
standard format that it sends down a pipe. The Visualizer then reads the data from
this pipe and displays it for your analysis. Figure 86 shows how this is
implemented.

Figure 86. TotalView Visualizer Connection

Pipe

TotalView – Extracts data from an array The TotalView Visualizer – Displays
the array data graphically

Sends data in
standard format
to a visualizer
232 TotalView User’s Guide

This split between the TotalView Debugger and the Visualizer also allows for
different implementations of the visualizer. It means that you interact with
TotalView to choose what you want to visualize and when you want to grab a
snapshot of your data. You interact with the Visualizer to choose how to display
your data.

You can send data directly from the TotalView Debugger to the TotalView
Visualizer while you are debugging your program. You can send data from
TotalView directly to a third party visualizer that allows you to write your own
visualizer program, or adapt an interface for visualization with a third-party
product. Finally, you can launch the TotalView Visualizer from the command line
using data you have already saved to a file. Figure 87 shows these relationships.

Figure 87. TotalView Visualizer Relationships

TotalView TotalView Visualizer

Visualizer
Data File

Third Party
Visualizer

Save data
to file

Launch Visualizer
from Command Line

Launch Visualizer
from TotalView

Launch Third
Party Visualizer
TotalView User’s Guide 233

CHAPTER 9: Visualizing Data
Configuring TotalView to Launch the
Visualizer

When TotalView launches the Visualizer, it pipes data to standard input of the
Visualizer so you can visualize data-sets as your program creates them.

TotalView automatically launches the visualizer when it is requested in a variable,
breakpoint, or expression window. You can configure TotalView to set the
following:

• Whether or not visualization is enabled.

• The shell command used by TotalView to launch the Visualizer.

• The maximum number of dimensions of an array that TotalView will export
to the Visualizer.

If you disable visualization, all attempts to use the visualizer are silently ignored.
This can be useful if you want to execute some code containing evaluation points
that do visualization, but do not want to disable all the evaluation points
individually.

To change the Visualizer launch options interactively, select the Visualizer
Launch Window from the root window. A dialog box appears, as shown in
Figure 88.

Figure 88. The Visualizer Launch Window
234 TotalView User’s Guide

Configuring TotalView to Launch the Visualizer
To enter your choices, do the following:

1. Change the auto launch option. The TotalView Visualizer is set to enable
visualization and launch the visualizer automatically by default. If you do not
want it to launch automatically and disable visualization, clear the TotalView
Visualizer Auto Launch Enabled checkbox.

2. If you want the visualizer to use a customized command when it starts, enter
it in the Visualizer launch command box.

3. Change the maximum permissible rank. Edit the value (the supported range
is 1 through 16) if you plan to save the data that you export from TotalView
to a file or display it in a different visualizer.

The maximum permissible rank (the default is 2), ensures that data exported
by TotalView is suitable for display in the TotalView Visualizer which
displays only two dimensions of data. This limit does not apply to data saved
in files, or to visualizers that can display more than two dimensions of data.

4. Clicking on the Defaults button sets the options to the defaults. Note that this
reverts to the standard defaults even if you have used an X resource to change
the settings on start-up.

5. If you want to use these settings, press Return or click on the OK button. To
abandon your edits, click on the Abort button.

If you disable visualization or change the visualizer launch string while a visualizer
is running, TotalView closes the pipe to the visualizer. If you enable visualization
again, a new visualizer process will be launched the next time you visualize
something.

You can change the shell command that TotalView uses to launch the visualizer
by editing the Visualizer launch string. This is useful if you want to run a different
visualizer, or if you want to save visualization data to a file for viewing later. For
example, you can save the file with the following visualizer launch string:

cat > your_file

Later, you can visualize the file with one of the following (equivalent) commands:

% visualize –persist < your_file

% visualize –file your_file
TotalView User’s Guide 235

CHAPTER 9: Visualizing Data
You can set the visualizer launch options automatically when TotalView starts, by
setting X resources. For details, see Chapter 11, “X Resources,” on page 263.

Data Types that TotalView Can Visualize

The data you select for visualization as a single entity is called a data-set. Each
data-set passed from TotalView to the Visualizer is tagged with a numeric identifier
to tell the Visualizer whether this is a new data-set, or an update to an existing data-
set. TotalView creates the identifier from the program, base address and type of
the data selected for visualization. This ensures that when you visualize the “same”
data by different methods, the same set of images is updated. Note that this causes
the visualization of a stack variable at different recursion levels or call paths, to
appear as separate images instead of updates to an existing image.

By default, TotalView restricts the type of data it can visualize to one and two
dimensional arrays of character, integer, or floating point data. These must be
located in memory, not in registers.

You can visualize arrays with more dimensions by using an array slice expression
to extract an array with fewer dimensions. Figure 89 shows how a three
dimensional variable has been sliced to two dimensions by selecting a single index
in the middle dimension to permit visualization.

Figure 89. A Three Dimensional Array Sliced to Two Dimensions
236 TotalView User’s Guide

Visualizing Data from the Variable Window
Visualizing Data from the Variable
Window

The simplest way to visualize data from TotalView is by using the variable window.
For details on the variable window, see Chapter 7, “Examining and Changing
Data,” on page 147. Open a variable window on the array of interest and stop
program execution where the array values are those you would like to visualize.
At this point, the TotalView variable window should show the current array values
in a text format as shown in the example in Figure 90.

You can edit the type and slice expressions in the variable window to select the
precise data you want to visualize. You can display subsections of arrays, which
are called slices, to limit the volume of data you examine at one time. See
“Displaying Array Slices” on page 172. Limiting the volume of data increases the
speed of the visualizer.

With the desired array (or array slice) displayed in the variable window, select the
Visualize (v) command from the window menu to launch the visualizer program
and send it the array data you want to visualize. The first visualize command
launches the visualizer program (if needed) and creates the initial data window
display. Subsequent Visualize commands send updated data values and cause the
visualizer to update its display.

Figure 90. Variable Window
TotalView User’s Guide 237

CHAPTER 9: Visualizing Data
You can visualize laminated data pane displays, using the visualize command. See
“Visualizing a Laminated Data Pane” on page 179. The process or thread index
forms one of the dimensions of the visualized data. By default therefore, you are
restricted to visualizing scalar or vector information. If you do not want the process
or thread index as one of the dimensions of your visualization, you can use a non-
laminated display instead and visualize it.

Visualizer data displayed through a variable window is not automatically updated
as you step through your program. You must explicitly request an update by
reissuing the Visualize (v) command in variable window.
238 TotalView User’s Guide

Visualizing Data in Expressions
Visualizing Data in Expressions

You can use TotalView’s expression system to visualize data with the $visualize
built-in function. You can use it to:

• Visualize several different variables from a single expression

• Visualize variables in the expression evaluation window

• Visualize one or more variables from an evaluation point

The $visualize built-in function takes two parameters separated by a comma.

$visualize (array [, slice_string])

The first parameter array is an expression that specifies a data-set for visualization.
The second parameter slice_string is optional. If present, it is a quoted string
containing a constant slice expression that modifies the data-set specified by the
first parameter. The following examples assume that your program contains a two
dimensional array called my_array.

The first example simply visualizes the whole array. The second example selects
every second element in the major dimension of the array, and also clips the minor
dimension to all elements in the given (inclusive) range. The third example reduces
the visualized data-set to a single dimension, by selecting a single sub-array.

You may have to use a cast expression to let TotalView know the dimensions of
the variable you want to visualize. The following shows a procedure that passes a
two dimensional array parameter, without specifying the extent of the major
dimension.

void my_procedure (double my_array[][32])
{ /* procedure body */ }

Table 20. $visualize examples for C and Fortran

C Fortran

$visualize (my_array); $visualize (my_array)

$visualize (my_array,”[::2][10:15]”) $visualize (my_array,’(11:16,::2)’)

$visualize (my_array,”[12][:]”); $visualize (my_array,’(:,13)’)
TotalView User’s Guide 239

CHAPTER 9: Visualizing Data
Attempts to visualize my_array directly will fail because the first dimension is
not specified. The following cast expression defines the dimensions of the array,
and allows you to visualize it.

$visualize (*(double[32][32]*)my_array);

You can use the $visualize built-in statement in an expression in the expression
window or by adding an expression to a breakpoint to create an evaluation point.
But note that any evaluation point or expression in the expression window that
includes an instance of $visualize cannot be compiled. Instead, the TotalView
debugger interprets these statements. See “Defining Evaluation Points” on
page 205 for information about compiled and interpreted expressions.

Using $visualize in the expression window is a handy technique to refine the array
and slice arguments or to update the Visualizer display of several arrays
simultaneously.

Visualizer
Animation

Using the $visualize built-in statement in an evaluation point expression is a
powerful technique to provide an animated display of your data. When used in an
evaluation point, the $visualize statement forces the Visualize program to update
its display of the array argument every time the evaluation point is reached by
program execution. By setting an evaluation point using $visualize at program
statements which change the values of array elements, you can create a visual
animation of the array as the program executes.
240 TotalView User’s Guide

The TotalView Visualizer
The TotalView Visualizer

The Visualizer is implemented as a self-contained process. You can launch it
directly from TotalView while you are debugging your programs. Or, you can
launch it from the command line to visualize data you saved to a file. The Visualizer
can read data-sets on its standard input stream, or from a file. The Visualizer
windows are shown in Figure 91.

The Visualizer is a Motif application, so you may change some of the Visualizer
settings using X resources. See “Visualizer X Resources” on page 283.

Figure 91. Visualizer Windows

Surface View

Graph View

Directory
window

Data
windows
TotalView User’s Guide 241

CHAPTER 9: Visualizing Data
The Visualizer has two types of windows:

• A directory window

A single main window lists the data-sets that you can visualize. You can
interact with the directory window to set global options and to create views
of your data-sets.

• Data windows

The data windows contain images of the data-sets. By interacting with a data
window, you can change its appearance and set options on viewing its data-
set. Using the directory window, you can open several data windows on a
single data-set to get different views of the same data.

Directory Window The directory window contains a list of the data-sets you can display in the
Visualizer. You can create these data-sets during your debugging session or from
a file See Figure 92.

Whenever TotalView passes the Visualizer a new data-set the Visualizer updates
the list of data-sets in the directory window.

You can select a data-set by left-clicking on it. You can select only one data-set at
a time. Right-clicking in the data-set list displays the View menu. From this menu,
you can select Graph or Surface visualization.To delete a data-sets from the list,
click on it then display the File menu and select Delete. Updates to existing data-
sets do not alter the list.

Figure 92. Sample Visualizer Directory Window

Menu Bar

Data-Set List
242 TotalView User’s Guide

The TotalView Visualizer
You can automatically visualize the selected data-set by left-clicking in the data-
set then pressing Return. You can also double-left-click in the data-set list to select
and auto-visualize a data-set.

For a list of the menu and command choices from the directory window, see
Table 21.

Table 21. Directory Window Menu Commands

Menu Command Meaning

File Delete Deletes the currently selected data-set.
It removes the data-set from the data-set
list and destroys any data windows
displaying it.

Exit Closes all windows and exits the
Visualizer.

View Graph Creates a new graph window. See
“Graph Data Window” on page 247 for
more detail.

Surface Creates a new surface window. See
“Surface Data Window” on page 249
for more detail.

Options Auto
Visualize

This item is a toggle. When enabled, the
Visualizer automatically visualizes new
data-sets as they are read. See section 4
for information on how the visualization
method is selected.
TotalView User’s Guide 243

CHAPTER 9: Visualizing Data
Data Windows Data windows display graphical images of your data. An example of two different
types of data window is show in Figure 93.

All data windows contain a menu bar and a drawing area. The data window title,
as displayed by the window manager, is its data-set identification.

The File menu on the menu bar is the same for all data windows. Any other items
on the menu bar are specific to particular types of data window. The common data
window menu commands are described in Table 22.

Figure 93. Sample Visualizer Data Windows

Menu Bars
Surface View

Graph View

Drawing Area
244 TotalView User’s Guide

The TotalView Visualizer
Table 22. Data Window Menu Commands

Menu Command Meaning

File Directory Raises the directory window to the front
of the desktop. If the directory window
is currently minimized, it is restored.

New Base
Window

Creates a new data window using the
same visualization method and data-set
as the current data window. This helps
you to create several views of a data-set
using the same visualization method.

Options Pops-up a window of viewing options.
This window consists of a control area
and an action area. The control area is
specific to the type of data window. The
action area contains three buttons as
follows:
• OK — Apply any changes and pop

down the options window.

• Apply — Apply the options settings
in the control area, but leave the
options window up.

• Cancel — Pop down the options and
discard any changes in the control
area.

You can also cancel any changes you
have made in the control area by closing
the options window.

Delete Deletes the data window’s data-set from
the data-set list. This also destroys any
other data windows viewing the data-
set.

Close Closes the data window.
TotalView User’s Guide 245

CHAPTER 9: Visualizing Data
The drawing area displays the image of your data. You can interact with the drawing
area to alter the view of your data. For example, in the surface view, you can rotate
the graph to view it from different angles. You can also get the value and indices
of the data-set element nearest the cursor by left-clicking on it. A pop-up a window
displays the information. For details on this and other ways to manipulate the
surface view, see Table 27, “Surface Data Window Manipulations,” on page 253.

Views of Data

Different types of data-sets require different graphical views to display their data.
For example, a graph is more suitable for displaying one dimensional data-sets or
two dimensional data-sets where one of the dimensions has a small extent. But a
surface view is necessary for displaying a two dimensional data-set.

You can manually choose a visualization method for a given data-set or you can
let the Visualizer choose one for you. The Visualizer chooses a method based on
the following criteria:

1. If any data windows are currently displaying the data-set, they are raised to
the top of the desktop. If any of these windows is minimized, they are restored.

2. If no data windows exist for the data-set, but the data-set has been visualized
previously, the Visualizer creates a new data window using the most recent
visualization method.

3. If the data-set has never been visualized, the Visualizer chooses a method of
display based on the type of the data-set. Methods that can’t visualize the
data-set are ruled out. The Visualizer then chooses one of the remaining
methods, based on an internal scoring system that measures how well a given
data-set matches an ideal data-set for each method.

The Visualizer can automatically choose a visualization method and create a new
data window when it reads a new data-set. When the data-set is an update to an
existing data-set, the Visualizer uses the method last used to visualize the data.
You can enable and disable this feature from the Options menu in the TotalView
Visualizer directory window.
246 TotalView User’s Guide

Views of Data
Graph Data
Window

The graph window displays a two dimensional graph of one or two dimensional
data-sets. If the data-set is two dimensional, multiple graphs are displayed. When
you first create a graph window on a two dimensional data-set, the Visualizer uses
the dimension with the larger number of elements for the X axis. It then draws a
separate graph for each sub-array in the dimension with the smaller number of
elements. If this choice is not correct, you can transpose the data. Graph
visualization does not favor two dimensional data-sets with large extents in both
dimensions as this gives a very cluttered display.

You can display graphs with markers for each element of the data-set, with lines
connecting data-set elements, or with both lines and markers as shown in Figure 94.
See “Displaying Graphs” on page 248 for more details. Multiple graphs are
displayed in different colors. The X axis of the graph is annotated with the indices
of the long dimension. The Y axis shows you the data value.

You can scale and translate the graph, or pop up a window displaying the indices
and values for individual data-set elements. See “Manipulating Graphs” on
page 248 for details.

Figure 94. Visualizer Graph Data Window
TotalView User’s Guide 247

CHAPTER 9: Visualizing Data
Displaying Graphs The graph options dialog lets you control how to display the graph. You can bring
up this dialog box by displaying the File menu and selecting the Options command.
See Table 23 for details.

Manipulating
Graphs

You can get a detailed view of part of the graph by using the keyboard and mouse
with the focus in the drawing area. You can control scaling and translation
separately, or both together with a zoom. You can also query individual element
values. See Table 24 for details.

Table 23. Graph Data Window Options Dialog

Toggle Meaning

Lines Toggles the display of lines connecting data-set
elements.

Points Toggles the display of markers for each data-set
element.

Transpose Toggles the choice of dimension to map onto the X
axis of the graph for two dimensional data-sets.

Table 24. Graph Data Window Manipulations

Action Description

Scale Press the Control key and hold down the middle
mouse button. Move the mouse down to zoom in on
the center of the drawing area, or up to zoom out.

Translate Press the Shift key and hold down the middle
mouse button. Moving the mouse drags the graph.

Zoom Press the Control key and hold down the left mouse
button. Drag the mouse button to create a rectangle
that encloses the area of interest. The area is then
translated and scaled to fit the drawing area.

Reset View Press r to reset all translation and scaling. This
resets the view of the graph to the initial state.
248 TotalView User’s Guide

Views of Data
Figure 95 shows a graph view of two dimensional random data. It is created by
selecting Points and deselecting Lines in the graph data window options dialog
box.

Surface Data
Window

The surface data window displays two dimensional data-sets as a surface in two
or three dimensions. The data-set’s array indices map to the first two dimensions
(X and Y axes) of the display. Figure 96 shows a two dimensional map, where the
data-set values are shown using only the Zone option to demarcate ranges of
element values. For a zone map with contour lines, turn the Zone and Contour
settings on and Mesh and Shade off.

Query Hold down the left mouse button near a graph
marker. A window pops up displaying the data-set
element’s indices and value.

Table 24. Graph Data Window Manipulations (Continued)

Action Description

Figure 95. Display of Random Data
TotalView User’s Guide 249

CHAPTER 9: Visualizing Data
You can display random data by selecting only the Zone setting and turning Mesh,
Shade, and Contour off. The display shows where the data is located and allows
you to click on it to get the values of the various points.

Figure 97 shows a three dimensional surface which maps element values to the
height (Z axis).

Figure 96. Two Dimensional Surface Visualizer Data Display
250 TotalView User’s Guide

Views of Data
Displaying Surface
Data

You have several options to help you control the display of the surface data. They
are available in the options dialog box. In the data window, display the File menu
and select the Options command. A dialog box appears with choices shown in
Table 25.

Figure 97. Three Dimensional Surface Visualizer Data Display
TotalView User’s Guide 251

CHAPTER 9: Visualizing Data
The Auto Reduce option allows you to choose between viewing all your points of
data, which takes longer to appear in the display, or viewing an averaging of data
over a number of nearby points, which appears in the display much faster. The
default for Auto Reduce is on so your display appears faster.

Table 25. Surface Data Window Options

Toggle Meaning

Mesh Toggles the mesh option. When this option is set,
the surface is displayed in three dimensions, with
the X-Y grid projected onto the surface. When
neither this option nor the shade option are set, the
surface is displayed in two dimensions (See
Figure 96).

Shade Toggles the shade option. When this option is set,
the surface is displayed in three dimensions and
shaded either in a “flat” color to differentiate the
top and bottom sides of the surface, or in colors
corresponding to the value if the zone option is also
set. When neither this option nor the mesh option
are set, the surface is displayed in two dimensions
(See Figure 96).

Contour Toggles the contour option. When this option is set,
contour lines are displayed demarcating ranges of
element values.

Zone Toggles the zone option. When this option is set,
the surface is displayed in colors demarcating
ranges of element values.

Auto Reduce Toggles the auto-reduce option. When this option
is set, the surface displayed is derived by averaging
over neighboring elements in the original data-set.
This speeds up the visualization method by
reducing the resolution of the surface. Clear this
option if you want to accurately visualize all data-
set elements.
252 TotalView User’s Guide

Views of Data
You can reset the viewing parameters to those in effect when the Visualizer first
came up. The View menu in the data window lets you reset the viewing parameters.
Choose Reset View (r) from the View menu in the data window.

Manipulating
Surface Data

You can rotate a three dimensional surface to change the viewing angle, so you
can see parts of the surface that are hidden from some viewing angles, or get a
detailed view of part of the surface. When you click and hold the middle mouse
button in the drawing area, then drag the mouse. The image changes to a wire-
frame bounding box of the surface which moves with the mouse. You can rotate
the view in two dimensions simultaneously, or select a single axis at a time to
rotate. When you let go of the button, you can see the graph from the new, selected
vantage point.

In addition to rotating the graph, you can manipulate it several other ways, as shown
in Table 27. You can display the indices and values of individual data-set elements
in a pop up window. You can control scaling and translating separately, or together
with a zoom. You can query the values of individual elements. And you can reset
the view to what it was when you started.

Table 26. Surface Data Window Menu Commands

Menu Command Meaning

View Reset View Restores all translation, rotation and
scaling. This resets the view of the
surface to the initial state and enlarges
the display slightly.

Table 27. Surface Data Window Manipulations

Action Description

Rotate Hold down the middle mouse button and drag the
mouse to freely rotate the surface. You can also press
the x, y, or z keys to select a single axis of rotation.

Scale Press the Control key and hold down the middle
mouse button. Move the mouse down to zoom in on
the center of the drawing area, or up to zoom out.
TotalView User’s Guide 253

CHAPTER 9: Visualizing Data
Launching the Visualizer from Command
Line

To start the Visualizer from the shell command line, use the following syntax:

% visualize [options]

where options include:

–file filename Reads data from filename instead of reading
from standard input.

–persist Continues to run after encountering an EOF
on standard input. Without this option, the
Visualizer exits as soon as it reads all of the
data from standard input.

Translate Press the Shift key and hold down the middle mouse
button. Moving the mouse drags the surface.

Zoom Press the Control key and hold down the left mouse
button. Drag the mouse button to create a rectangle
that encloses the area of interest. The area is then
translated and scaled to fit the drawing area.

Reset View Press r to reset translation and scaling. This does not
reset the rotation.

Query Hold down the left mouse button near the surface. A
window pops up displaying the nearest data-set
element’s indices and value.

Table 27. Surface Data Window Manipulations (Continued)

Action Description
254 TotalView User’s Guide

Launching the Visualizer from Command Line
By default, the Visualizer reads its input data sets from its standard input stream
and exits when it reads an EOF on standard input. When started by TotalView, the
Visualizer normally reads its data from a pipe, ensuring that the Visualizer exits
when TotalView does. If you want the Visualizer to continue to run after it exhausts
all input from the standard input stream, you should invoke the Visualizer with the
–persist option.

If you want to read data from a file, invoke the Visualizer with the –file filename
option. For example:

% visualize –file my_data_set_file

When you visualize data-sets from a file, the Visualizer reads all the data-sets in
the file. This means that the images you see are of the last versions of the data-sets
in the file.

Visualize supports the generic X toolkit command line options. For example, you
can start the Visualizer with the directory window minimized by using the –iconic
option. Your system manual page for the X server or the The X Window System
User’s Guide, by O’Reilly & Associates lists the generic X command line options
in detail.

You can also customize the Visualizer by setting X resources in your resource files
or on the command line with the –xrm resource_setting option. The available
resources are described in Chapter 12, “TotalView Command Syntax,” on
page 287. Use of X resources to modify the default behavior of TotalView or the
TotalView Visualizer is described in greater detail in Chapter 11, “X Resources,”
on page 263.
TotalView User’s Guide 255

CHAPTER 9: Visualizing Data
Adapting a Third Party Visualizer to the
TotalView Debugger

TotalView passes a stream of data-sets to the Visualizer encoded in the format
described below. You can write your own Visualizer or adapt an interface to a
third-party Visualizer by parsing this format. However, before doing this, you
should be aware of some assumptions in the design of the interface:

• The data-set encoding assumes that TotalView and the Visualizer are running
on the same machine architectures, meaning that word lengths, byte order
and floating-point representations are identical. Note that there is sufficient
information in the data-set header to detect when this is not the case (with
the exception of floating-point representation), but no simple way of
describing any required translations.

• TotalView transmits data-sets down the pipe in a simple unidirectional flow.
There is no handshaking protocol in the interface. This requires the Visualizer
to be an eager reader on the pipe. If the Visualizer does not read eagerly, the
pipe will back up and block TotalView.

The format of a data-set is included in the TotalView distribution in a header file
named include/visualize.h in the TotalView installation directory. Each data-set
is encoded with a fixed-length header followed by a stream of array elements. The
header contains the following fields.

Table 28. Data-Set Header Fields

Field Meaning

vh_magic Contains VIS_MAGIC, a symbolic constant to provide
a check that this is a data-set header and that byte order
is compatible.

vh_version Contains VIS_VERSION, a symbolic constant to
provide a check that the reader understands the protocol.

vh_id Contains the data-set id. Every data-set in a stream of
data-sets is numbered with a unique id so that updates to
a previous data-set can be distinguished from new data-
sets.
256 TotalView User’s Guide

Adapting a Third Party Visualizer to the TotalView Debugger
1. Types in the data-set are encoded by a combination of the vh_type field and
the vh_item_length field. This allows the format to handle arbitrary sizes of
both signed and unsigned integers, and floating point numbers.

The vis_float constant corresponds to the default floating point format (usually,
IEEE) of the target machine. The Visualizer does not handle values other than the
default on machines that support more than one floating point format.

Although a three byte integer is expressible in the Visualizer’s data-set format, it
is unlikely that the Visualizer will handle one. The Visualizer only handles data
types that correspond to the C data types permitted on the machine where the
Visualizer is running.

Similarly, the long double type varies significantly depending on the C compiler
and target machine. Therefore, visualization of the long double type is unlikely
to work if you run the Visualizer on a machine that is different from the one
where you extracted the data.

In addition, you need to be aware of these data type differences if you write your
own visualizer and plan to run it on a machine that is different from the one where
you extract the data.

vh_title Contains a plain text string of length
VIS_MAXSTRING that annotates the data-set.

vh_axis_order Contains one of the constants vis_ao_row_major or
vis_ao_column_major.

vh_type Contains one of the constants vis_signed_int,
vis_unsigned_int, or vis_float.1

vh_item_length Contains the length (in bytes) of single element of the
array.

vh_item_count Contains the total number of elements to be expected.

vh_effective_rank Contains the number of dimensions that have an extent
larger than 1.

vh_dims Contains information on each dimension of the data-set.
This includes a base, count and stride. Only the count is
required to correctly parse the data-set. The base and
stride only give information on the valid indices in the
original data.2

Table 28. Data-Set Header Fields (Continued)

Field Meaning
TotalView User’s Guide 257

CHAPTER 9: Visualizing Data
2. Note that all VIS_MAXDIMS of dimension information is included in the
header, even if the data has fewer dimensions.

The data following the header is a stream of consecutive data values of the type
indicated in the header. Consecutive data values in the input stream correspond to
adjacent elements in vh_dims[0].

You can verify that your reader’s idea of the size of this type is consistent with
TotalView by checking that the value of the n_bytes field of the header matches
the product of the size of the type and the total number of array elements.
258 TotalView User’s Guide

9

CHAPTER 10:

Troubleshooting
This chapter describes how to solve common problems that you might encounter
while using TotalView. Refer to Table 29.

Table 29. Symptoms and Solutions

Symptom Possible Solutions

Windows don’t appear or operate
correctly

• Your DISPLAY environment variable is not set
correctly.

• The resource “totalview*useTransientFor: {on | off}” on
page 281 is not set correctly. Change it from on to off, or
from off to on.

• Start Totalview with the –grab command-line option.

• Use the xhost + command to allow all hosts to access
your display.

Pressing Control-C in an xterm
window causes TotalView to exit

• Start TotalView with the –ignore_control_c or –icc
command-line option.

Source code doesn’t appear in
source code pane

• Set the search path for directories with the Set Search
Directory (d) command in the process window.

License manager does not
operate correctly

• Set the LM_LICENSE_FILE environment variable to
the pathname of the TotalView license file. See the
TotalView Installation and Administration Guide for
details.
TotalView User’s Guide 259

CHAPTER 10: Troubleshooting
Fatal error: Checkout … failed • Check the value of the LM_LICENSE_FILE
environment variable. Make sure the value ends with the
string license.dat.

• Make sure the TotalView license manager lmgrd is
running on the license manager host machine. The name
of this machine is listed in the SERVER line of your
license.dat file.

• Make sure that the lmgrd that is running matches the one
which came with your TotalView distribution.

Out of memory error • Increase the swap space on your machine. For details, see
“Swap Space” on page 324.

• Increase the data size limit in the C shell. Use the C
shell’s limit command, such as:

% limit datasize unlimited

Error creating new process • Increase the swap space on your machine. For details, see
“Swap Space” on page 324.

• Increase the number of process slots in your system. See
your operating system documentation for details.

• Check the xterm window to see if the execve() call
failed, and if it did, set the PATH environment variable.

• Make sure that the /proc filesystem is mounted on your
system. For details, see “Mounting the /proc File
System” on page 323.

Error launching process or
Attempt to delete the target of an
unbound process

• Run your program at the UNIX command line prompt to
see if it will load and start executing. When it passes this
test, you can run TotalView on your program to debug it.

• If the operating system can’t load your program and start
it, make sure your program is built for the machine you
are debugging on.

Table 29. Symptoms and Solutions (Continued)

Symptom Possible Solutions
260 TotalView User’s Guide

Troubleshooting
When debugging HPF programs,
HPF source code does not appear
in the process window; only f77
code appears.

• When compiling HPF program be sure to set both the –g
and –Mtotalview flags when both compiling and linking
your programs.

Program behaves differently
under TotalView’s control

• Make sure your program does not setuid or exec another
program which does, for example, rsh. Normally, the
operating system will not allow a debugger to debug a
setuid executable nor allow a setuid system call while a
program is being debugged. Often these operations fail
silently. To debug setuid programs, login as the target
UID before starting TotalView.

• TotalView uses the SIGSTOP signal to stop processes.
On most UNIX systems, system calls can fail with the
errno set to EINTR when the process receives a
SIGSTOP signal. You need to change your code so that
it handles the EINTR failure. For example:

do {
n = read(fd,buf,nbytes);

} while (n < 0 && errno == EINTR);

The TotalView server, tvdsvr,
fails to start on a remote node.

• Re-edit the server launch command field, click OK, and
launch the server again. For information, see “Starting
the Debugger Server for Remote Debugging” on
page 64.

X resources are not recognized • Use the xrdb command (part of the X Window System)
to display the current X resources:

xrdb -query

• Use the xrdb command to load your X resources:

xrdb -load $HOME/.Xdefaults

• Read the xrdb manual page for more information.

Single stepping is slow or
TotalView is slow to respond to
breakpoints

• Close some of the variable windows that you have open.

• The global variables window is open and has a large
number of variables. Close the global variables window.

Table 29. Symptoms and Solutions (Continued)

Symptom Possible Solutions
TotalView User’s Guide 261

CHAPTER 10: Troubleshooting
Other fatal error or
Internal error in TotalView

• Report this problem. See “Reporting Problems” on
page iv.

Table 29. Symptoms and Solutions (Continued)

Symptom Possible Solutions
262 TotalView User’s Guide

10

CHAPTER 11:

X Resources
This chapter provides reference information about the X Window System resources
that you can use to customize TotalView or the TotalView Visualizer. You can
use these resources in your X resources files (such as .Xdefaults on UNIX systems
or decw$sm_general.dat on VMS systems).

For information on X resources files, refer to the X Window System documentation
that came with your machine or the X Window System User’s Guide, by O’Reilly
& Associates (ISBN 1–56592–015–5).

On most UNIX systems, you load your X resources file using the xrdb command
(part of the X Window System executables). For example:

% xrdb –load $HOME/.Xdefaults

The default value for each resource in this chapter is shown in bold.
TotalView User’s Guide 263

CHAPTER 11: X Resources
TotalView X Resources

You can override some of the resources with command-line options for the
totalview command, as described in “TotalView Command Syntax” on page 287.

Window
Locations

Values for the location of windows are expressed as:

=widthxheight+x+y

where width is the width of the window in pixels, height is the height of the window
in pixels, x is the distance from the upper-left corner of the window to the left
screen edge in pixels, and y is the distance from the upper-left corner of the window
to the top screen edge in pixels. A value of -1 for x or y indicates that the window
should be centered in the screen with respect to the x-axis or y-axis. If desired, you
can express x or y as negative numbers to indicate the distance from the lower-
right corner of the window to the bottom screen edge or right screen edge instead
of the distance from the upper-left corner. A value of zero (0) indicates that
TotalView should use the default value. Also, you can supply just the size (width
and height), and TotalView will use the default location (x and y) with it.

As an example, the expression =0x0-1+20 uses the default width and height, centers
the window horizontally, and places the window 20 pixels down from the top of
the screen. The expression =330x120+20-20 makes the window 330 pixels wide
by 120 pixels high and places the window 20 pixels from the left edge of the screen
and 20 pixels up from the bottom edge of the screen.

totalview*arrowBackgroundColor: color
Sets the background (outline) color of PC arrow to color.

Default: black

Note: You can specify any of the following X resources on the
command line using the “–Xresource=value” command line
option specified on page 288. For example, to set
totalview*stopAll to false, you could specify the command
line option –stopAll=false. Note that the string “totalview*”
is omitted from the command line
264 TotalView User’s Guide

TotalView X Resources
totalview*arrowForegroundColor: color
Sets the foreground (inner) color of PC arrow to color.

Default: yellow2

totalview*autoLoadBreakpoints: {true | false}
If true (default), automatically load action points from the file
filename.TVD.breakpoints. If false, you use the STOP/BARR/EVAL/GIST ->
Load All Action Points command in the process window to load action points.

Override with: –lb option (overrides false)
–nlb option (overrides true)

totalview*autoRetraceAddresses: {on | off}
If on (default), TotalView will retrace the sequence of dive operations performed
in a variable window and recompute a new address for the variable. If off, does
not retrace addresses.

totalview*autoSaveBreakpoints: {true | false}
If false (default), do not automatically save action points to an action points file
when you exit. You use the STOP/BARR/EVAL/GIST -> Save All Action Points
command in the process window to save action points.

Override with: –sb option (overrides false)
–nsb option (overrides true)

totalview*backgroundColor: color
Sets the general background color to color.

Default: white

totalview*barrierForegroundColor: color
Sets the color of the barrier point icon.

Default: blue
TotalView User’s Guide 265

CHAPTER 11: X Resources
totalview*barrierFontForegroundColor: color
Sets the color of the font used to show the H and Hold indicators for held processes.

Default: blue

totalview*barrierStopAll: {true | false}
Same as totalview*processBarrierStopAllRelatedProcessesWhenBreakpoint
Hit.

totalview*blindMouse: {on | off}
If on (default), allow “mouse ahead,” the queuing of mouse clicks (similar to typing
ahead in a shell). If off, successive mouse clicks are ignored until TotalView
responds to the first mouse click.

totalview*breakFontForegroundColor: color
Sets the color of “B” state to color.

Default: orange

totalview*breakpointWindLocation: =widthxheight+x+y
Specifies placement of the first action points window.

totalview*buttonBackgroundColor: color
Sets the button background color to color. Defaults to the background color.

totalview*buttonForegroundColor: color
Sets the button foreground color to color. Defaults to the foreground color.

Default:
width height x y
columns(70) lines(12) 335 10
266 TotalView User’s Guide

TotalView X Resources
totalview*chaseMouse: {on | off}
If on (default), display dialog boxes at the location of the mouse cursor. If off,
display dialog boxes centered in the upper third of the screen.

Override with: –chase option (overrides off)
–no_chase option (overrides on)

totalview*compilerVars: {true | false}
Alpha Digital UNIX and SGI only. If false (default), TotalView does not show
variables created by the Fortran compiler. If true, TotalView shows variables
created by the Fortran compiler and the variables in the user’s program.

Some Fortran compilers (Digital f90/f77, SGI 7.2 compilers) output debug
information which describes variables that the compiler itself has invented for
purposes such as passing the length of character*(*) variables. By default
TotalView suppresses the display of these compiler generated variables, however
you can set totalview*compilerVars to true to cause such variables to be displayed.
This could be useful if you are looking for a corruption of a run time descriptor or
are writing a compiler.

Override with: –compiler_vars option (overrides false)
–no_compiler_vars option (overrides true)

totalview*compileExpressions: {true | false}
Alpha Digital UNIX and IBM AIX operating systems only. If true (default),
TotalView enables compiled expressions. If false, TotalView disables compiled
expressions and interprets them instead.

totalview*conditionVariableInfoWindLocation: =widthxheight+x+y
Specifies placement of the first condition variable information window.

totalview*cTypeStrings: {true | false}
If false (default), use TotalView’s type string extensions when displaying the type
strings for arrays. If true, use C type string syntax when displaying arrays.

Default:
width height x y
columns(75) lines(15) 360 300
TotalView User’s Guide 267

CHAPTER 11: X Resources
totalview*dataWindLocation: =widthxheight+x+y
Specifies placement of the first variable window.

totalview*displayAssemblerSymbolically: {on | off}
If off (default), display Assembler locations as hexadecimal addresses. If on,
display Assembler locations as “label+offset.”

totalview*DPVMDebugging: {true | false}
Digital UNIX only.

If false (default), disables support for debugging the Digital UNIX implementation
of Parallel Virtual Machine (DPVM) applications. If true, enables support for
debugging DPVM applications.

Override with: –dpvm option (overrides false)
–no_dpvm option (overrides true)

totalview*editorLaunchString: command_string
Sets the editor launch command string to the specified value. Refer to “Changing
the Editor Launch String” on page 122 for more information on the format of
command_string.

Default: xterm –e %E +%N %S

totalview*errorFontForegroundColor: color
Sets the color of “E”, “Z”, and “?” states to color.

Default: red

totalview*evalForegroundColor: color
Sets the color of the EVAL action point signs to color.

Default: orange

Default:
width height x y
columns(72) max(205, lines(15)) -80 320
268 TotalView User’s Guide

TotalView X Resources
totalview*evalWindLocation: =widthxheight+x+y
Specifies placement of the first expression evaluation window.

totalview*eventLogWindLocation: =widthxheight+x+y
Specifies placement of the event log window.

totalview*font: fontname
Specifies the font used by the TotalView debugger. Use the X Windows supplied
application xlsfonts to list the names of available fonts.

Default: fixed

totalview*foregroundColor: color
Sets the general foreground color (i.e., the text color) to color.

Default: black

totalview*frameOffsetX: n
Sets the horizontal placement offset between windows of the same type, as
TotalView places them on the screen. This value is added to the default value used
by TotalView. If you are using TotalView title bars, use the default.

Default: 0

Default:
width height x y
columns(83) lines(30) + 2 -1 10

Default:
width height x y
columns(75) lines(20) -75 -50
TotalView User’s Guide 269

CHAPTER 11: X Resources
totalview*frameOffsetY: n
Sets the vertical placement offset between windows of the same type, as TotalView
places them on the screen. This value is added to the default value used by
TotalView. If you are using TotalView title bars, use the default.

Default: 0

totalview*globalsWindLocation: =widthxheight+x+y
Specifies placement of the global variables window.

totalview*globalTypenames: {true | false}
If true (default), specifies that TotalView can assume that type names are globally
unique within a program and that all type definitions with the same name are
identical. In C++, the standard asserts that this must be true for standard conforming
code.

If this option is true, TotalView will attempt to replace an opaque type (struct foo
*p;) declared in one module, with an identically named defined type (struct foo {
… };) in a different module.

If TotalView has read the symbols for the module containing the non-opaque type
definition, then when displaying variables declared with the opaque type,
TotalView will automatically display the variable using the non-opaque type
definition.

If false, specifies that TotalView cannot assume that type names are globally
unique within a program. You should specify this option if your code has multiple
different definitions of the same named type, since otherwise TotalView is likely
to pick the wrong definition to substitute for an opaque type.

Override with: –global_types option (overrides false)
–no_global_types option (overrides true)

Default:
width height x y
columns(62) max(205, lines(15)) -80 10
270 TotalView User’s Guide

TotalView X Resources
totalview*grabMouse: {on | off}
If off (default), do not force keyboard input to dialog boxes. If you’re running
TotalView with a window manager that is operating in “click-to-type” mode, you
should set this resource to “on” or use the –grab command-line option.

totalview*helpWindLocation: =widthxheight+x+y
Specifies placement of the help window.

totalview*hpf: {true | false}
If true (default, if HPF debugging has been licensed), enables debugging at the
HPF source level.

Setting this X resource to false, causes TotalView to ignore .stx and .stb files, and
therefore to debug HFP code at the intermediate (Fortran 77) level.

Override with: –hpf option (overrides false)
–no_hpf option (overrides true)

totalview*hpfNode: {true | false}
If false (default), the node on which an HPF distributed array element resides is
not displayed in the process window.

The node display can be toggled in each variable window using the Toggle Node
Display option in the process window menu.

Override with: –hpf_node option (overrides false)
–no_hpf_node option (overrides true)

totalview*inverseVideo: {true | false}
If true, enables inverse video display. If false (default), disables inverse video
display.

Default:
width height x y
min(screen_width - 10,
columns(84))

min(screen_height - 20,
606)

-1 -20
TotalView User’s Guide 271

CHAPTER 11: X Resources
totalview*kccClasses: {true | false}
If set to true, (default) TotalView will convert structure definitions output by the
KCC compiler into classes that show base classes, and virtual base classes in the
same way as other C++ compilers. When set to false, TotalView will not convert
structure definitions output by the KCC compiler into classes. Virtual bases will
show up as pointers, rather than the data.

Unfortunately, the conversion has to be done by textual matching of the names
given to structure members, so can it be confused if you have structure component
names that look to TotalView like KCC processed classes. However, the
conversion is never performed unless TotalView believes that the code was
compiled with KCC, because TotalView has seen one of the tag strings that KCC
outputs, or because the user has asked for the KCC name demangler to be used.
Also all of the recognized structure component names start with “__”, and,
according to the C standard, user code should not contain names with this prefix.

Note that under some circumstances it is not possible to convert the original type
names because there is no available type definition. For example, it may not be
possible to convert “struct __SO_foo” to “struct foo”, so in this case the
“__SO_foo” type will be shown. This is only a cosmetic problem. (The “__SO__”
prefix denotes a type definition for the non-virtual components of a class with
virtual bases).

Since KCC outputs no information on the accessibility of base classes (“private”,
“protected”, “public”), TotalView is unable to provide this information.

totalview*mainHSplit: n
Same as totalview*mainHSplit1.

totalview*mainHSplit1: n
Controls the height of the stack trace, stack frame and source panes in the process
window. n specifies the pixel location of the top of the source pane.

Default: (window_height/3)
272 TotalView User’s Guide

TotalView X Resources
totalview*mainHSplit2: n
Controls the height of the source pane, thread list and action point list in the process
window. n specifies the pixel location of the top of the thread list and action point
list panes.

Default: A function of window_height: Tries to give 5 lines in the thread list and
action point list panes, and the remainder, at least 20 lines, to the source pane. If
it cannot give the source pane at least 20 lines, it shrinks the thread list and action
point list panes to zero.

totalview*mainVSplit: n
Same as totalview*mainVSplit1.

totalview*mainVSplit1: n
Controls the location of the partition between the stack trace and stack frame panes
in the process window. A value of –1 centers the partition.

Default: (window_width/2) – 20

totalview*mainVSplit2: n
Controls the location of the partition between the thread list and action point list
panes in the process window. A value of –1 centers the partition.

Default: (window_width/2) – 20

totalview*mainWindLocation: =widthxheight+x+y
Specifies placement of the first main process window.

totalview*menuArrowForegroundColor: color
Sets the menu arrow color to color.

Default: blue or green

Default:
width height x y
min(columns(94),
screen_width - 5)

max(456, lines(45)) 10 -150
TotalView User’s Guide 273

CHAPTER 11: X Resources
totalview*menuCache: {on | off}
If off (default), disables menu caching. Not all X servers support menu caching.
If your X server doesn’t and you have menu caching enabled (on), TotalView
menus appear blank the second and subsequent times you display them.

totalview*messageStateWindLocation: =widthxheight+x+y
Specifies the placement of the first message state window.

totalview*modulesWindLocation: =widthxheight+x+y
Specifies the placement of the first modules window.

totalview*mouseCursorBackgroundColor: color
Sets the mouse cursor background (mask) color to color.

Default: white or black

totalview*mouseCursorForegroundColor: color
Sets the mouse cursor foreground (inner) color to color.

Default: red

totalview*multForegroundColor: color
Sets the color of MULT action point signs to color.

Default: purple

totalview*mutexWindLocation: =widthxheight+x+y
Specifies placement of the first mutex information window.

Default:
width height x y
columns(72) max(205, lines(15)) -80 330

Default:
width height x y
columns(62) max(205, lines(15)) -75 15
274 TotalView User’s Guide

TotalView X Resources
totalview*overrideRedirect: {on | off}
If off (default), do not create TotalView windows using the override_redirect
attribute. If on, use the override_redirect attribute, which does not give the X
window manager a chance to intercept requests.

totalview*ownTitles: {on | off}
If on (default), place title bars on TotalView windows. If your window manager
is a reparenting one (places its own title bars on windows), turn off this resource.

totalview*popAtBreakpoint: {on | off}
If on, sets the Open (or raise) process window at breakpoint checkbox to be
selected by default. If off (default), sets that checkbox to be deselected by default.
See “Handling Signals” on page 48.

Override with: –pop_at_breakpoint option (overrides off)
–no_pop_at_breakpoint option (overrides on)

totalview*popOnError: {on | off}
If on (default), sets the Open (or raise) process window on error checkbox to be
selected by default. If off, sets that checkbox to be deselected by default. “Handling
Signals” on page 48.

Override with: –pop_on_error option (overrides off)
–no_pop_on_error option (overrides on)

totalview*processBarrierStopAll: {true | false}
Same as totalview*processBarrierStopAllRelatedProcessesWhenBreakpoint
Hit.

Default:
width height x y
columns(75) lines(15) 350 300
TotalView User’s Guide 275

CHAPTER 11: X Resources
totalview*processBarrierStopAllRelatedProcessesWhenBreakpointHit: {true | false}
If true (default), the default setting for process barrier breakpoints stops all related
processes. If false, the default setting for process barrier breakpoints does not stop
all related processes. See “Process Barrier Breakpoints” on page 201.

totalview*pullRightMenus: {on | off}
If off (default), use walking menus. If on, use pull-right menus.

totalview*pvmDebugging: {true | false}
If false (default), disables support for debugging the ORNL implementation of
Parallel Virtual Machine (PVM) applications. If true, enables support for
debugging PVM applications.

Override with: –pvm option (overrides false)
–nopvm option (overrides true)

totalview*rootWindLocation: =widthxheight+x+y
Specifies placement of the root window.

totalview*runningFontForegroundColor: color
Sets the color of “R”, “S”, “M”, and “I” states to color.

Default: green

totalview*scrollLineSpeed: n
Specifies the maximum number of lines per second that TotalView scrolls when
you click on arrows at the top and bottom of the scroll bars. To have TotalView
scroll as fast as possible, set n to 0.

Default: 40

Default:
width height x y
min(screen_width - 10,
columns(60))

max(150, lines(12)) 10 10
276 TotalView User’s Guide

TotalView X Resources
totalview*scrollPageSpeed: n
Specifies the maximum number of pages per second that TotalView scrolls when
you click above or below the elevator box inside the scroll bars. To have TotalView
scroll as fast as possible, set n to 0.

Default: 5

totalview*searchCaseSensitive: {on | off}
If off (default), searching for strings is not case-sensitive. If on, searches are case-
sensitive.

totalview*searchPath: dir1[,dir2,...]
Specifies a list of directories for the debugger to search when looking for source
and object files. This resource serves the same purpose as the Set Search Directory
(d)command in the process window (see “Setting Search Paths” on page 52). If
you use multiple lines, place a backslash (\) at the end of each line, except for the
last line.

totalview*serverLaunchEnabled: {true | false}
If true (default), TotalView automatically launches the TotalView Debugger
Server (tvdsvr) when you start to debug a remote process.

totalview*serverLaunchString: command_string
Specifies the command string that TotalView uses to automatically launch the
TotalView Debugger Server (tvdsvr) when you start to debug a remote process.
command_string is executed by /bin/sh. By default, TotalView uses the rsh
command to start the server, but you can use any other command that can invoke
tvdsvr on a remote host. If you have no command available for invoking a remote
process, you can’t automatically launch the server; therefore, you should set
totalview*serverLaunchEnabled to false.

Default:
rsh %R –n "cd %D && tvdsvr –callback %L –set_pw %P –verbosity %V"
TotalView User’s Guide 277

CHAPTER 11: X Resources
totalview*serverLaunchTimeout: n
Specifies the number of seconds that TotalView waits to hear back from the
TotalView Debugger Server (tvdsvr) that it launched successfully. The number
of seconds must be between 1 and 3600 (1 hour).

Default: 30

totalview*shareActionPoint: {true | false}
Same as totalview*shareActionPointInAllRelatedProcesses.

totalview*shareActionPointInAllRelatedProcesses: {true | false}
If true (default), the default setting for action points will be to share them in all
related processes. If false, the default setting for action points will be to not share
them in all related processes. See “Breakpoints for Multiple Processes” on
page 197.

totalview*signalHandlingMode: action_list
Modifies the way in which TotalView handles signals. An action_list consists of
a list of signal_action descriptions, separated by spaces:

signal_action[signal_action] …

A signal_action description consists of an action, an equal sign (=), and a list of
signals:

action=signal_list

An action can be one of the following: Error, Stop, Resend, or Discard. For more
information on the meaning of each action, refer to “Handling Signals” on page 48.

A signal_list is a list of one or more signal specifiers, separated by commas:

signal_specifier[,signal_specifier] …

A signal_specifier can be a signal name (such as SIGSEGV), a signal number
(such as 11), or a star (*), which specifies all signals. We recommend using the
signal name rather than the number because number assignments vary across UNIX
versions.
278 TotalView User’s Guide

TotalView X Resources
The following rules apply when specifying an action_list:

• If you specify an action for a signal in an action_list, TotalView changes the
default action for that signal.

• If you do not specify a signal in the action_list, TotalView does not change
its default action for the signal.

• If you specify a signal that does not exist for the platform, TotalView ignores
it.

• If you specify an action for a signal twice, TotalView uses the last action
specified. In other words, TotalView applies the actions from left to right.

If you need to revert the settings for signal handling to TotalView’s built-in
defaults, use the Defaults button in the Set Signal Handling Mode dialog box.

For example, to set the default action for the SIGTERM signal to Resend, you
specify the following action list:

“Resend=SIGTERM”

As another example, to set the action for SIGSEGV and SIGBUS to Error, the
action for SIGHUP and SIGTERM to Resend, and all remaining signals to Stop,
you specify the following action list:

“Stop=* Error=SIGSEGV,SIGBUS Resend=SIGHUP,SIGTERM”

This action list shows how TotalView applies the actions from left to right. The
action list first sets the action for all signals to Stop. Then, the action list changes
the action for SIGSEGV and SIGBUS from Stop to Error and the action for
SIGHUP and SIGTERM from Stop to Resend.

totalview*sourcePaneTabWidth: n
Sets the width of the tab character that is displayed in the source pane. For example,
if your source file uses a tab width of 4, set n to 4.

Default: 8
TotalView User’s Guide 279

CHAPTER 11: X Resources
totalview*spellCorrection: {verbose | brief | none}
When you use the Function or File... or Variable... commands in the process
window or edit a type string in a variable window, the debugger checks the spelling
of your entries. By default (verbose), the debugger displays a dialog box before it
corrects spelling. You can set this resource to brief to run the spelling corrector
silently. (The debugger makes the spelling correction without displaying it in a
dialog box first.) You can also set this resource to none to disable the spelling
corrector.

totalview*stopAll: {true | false}
Same as totalview*stopAllRelatedProcessesWhenBreakpointHit.

totalview*stopAllRelatedProcessesWhenBreakpointHit: {true | false}
If true (default), the default setting for breakpoints will stop all related processes.
If false, the default setting for breakpoints will not stop all related processes. See
“Breakpoints for Multiple Processes” on page 197.

totalview*stopForegroundColor: color
Sets the color of STOP and ASM action point signs to color.

Default: red

totalview*stoppedFontForegroundColor: color
Sets the color of “T” state to color.

Default: blue or yellow2

totalview*useColor: {true | false}
If true (default), enables TotalView use of color. If false, disables all use of color
and display using monochrome black on white. This option overrides all other
color-related options.

Override with: –color option (overrides false)
–no_color option (overrides true)
280 TotalView User’s Guide

TotalView X Resources
totalview*userThreads: {true | false}
If set to true (default), enables handling of user-level (M:N) thread packages on
systems where two-level (kernel and user) thread scheduling is supported. If set to
false, disable handling of user-level (M:N) thread packages. Disabling thread
support may be useful in situations where you need to debug kernel-level threads,
but in most cases, this option is of little use on systems where two-level thread
scheduling is used.

Override with: –user_threads option (overrides false)
–no_user_threads option (overrides true)

totalview*useTextColor: {true | false}
If true (default), enables TotalView use of text color. If false, disables use of text
color.

Override with: –text_color option (overrides false)
–no_text_color option (overrides true)

totalview*useTitleColor: {true | false}
If true (default), enables TotalView use of title color. If false, disables use of title
color.

Override with: –title_color option (overrides false)
–no_title_color option (overrides true)

totalview*useTransientFor: {on | off}
If off, use “override redirect” windows, which don’t let you use the window
manager to perform operations, such as raise and lower, on dialog boxes. If you
use an advanced window manager, you can use the on option (default) to specify
that the debugger use “transient-for” type windows, which allow you to use the
window manager to perform operations on dialog boxes. If you’re using an X11R4
or more recent server and window manager, you should use the on option. If you’re
using the DECstation’s DEC window manager, you should use the off option.

totalview*verbosity: {silent | error | warning | info}
Sets the verbosity level of TotalView generated messages.
TotalView User’s Guide 281

CHAPTER 11: X Resources
Default: info

totalview*visualizerLaunchString: command_string
Specifies the command string that TotalView uses to launch the visualizer when
you first visualize something. This is a shell command line, so you can use the
shell redirection command to output visualization data-sets to a file (e.g. “cat >
your_file”).

Default: visualize

totalview*visualizerLaunchEnabled: {true | false}
If true (default), TotalView automatically launches the visualizer when you first
visualize something. If false, visualization is disabled.

totalview*visualizerMaxRank: n
Specifies the default value used in the “Maximum permissible rank” field of the
Visualizer Launch Window dialog box. This field sets the maximum rank of the
array that TotalView will export to the visualizer. TotalView’s default visualizer
cannot visualize arrays of rank greater than two, however if you are using another
visualizer, or just dumping binary data, you can set the limit here.

Default: 2

totalview*warnStepThrow: {true | false}
If set to true (default), and your program throws an exception during a TotalView
single-step operation, you will be asked if you wish to stop the single-step
operation. The process will be left stopped at the C++ run time library’s “throw”
routine. If set to false, then TotalView will not catch C++ exception throws during
single-step operations, which may cause the single-step operation to lose control
of the process, and cause it to run away.
282 TotalView User’s Guide

Visualizer X Resources
Visualizer X Resources

The TotalView visualizer uses a large number of X resources that are set up in its
application defaults file. The X resources documented are a subset of those found
in the application defaults file as they are the only ones that may be customized to
your preferences. Setting them in your own X resources file overrides the
application defaults file.

The default values of the X resources are listed here shown either in a bold typeface
in a list of alternative values, or separately if there can be a range of values. They
are the settings in the applications defaults file as it is shipped. Your site
administrator can edit this file to set the site defaults, therefore your site may have
different defaults.

Visualize*data*pick_message.background: color
Sets the color of the pick popup window.

Default: light yellow

Visualize*directory*auto_visualize.set: {1 | 0}
Sets the initial state of the auto-visualize option in the directory window. If set (1),
when a new data-set is added to the list, it will be visualized automatically using
an appropriate method. If cleared (0), the new data-set will not be displayed
automatically, and you will have to choose a visualization method for it.

Visualize*directory.width: width
Visualize*directory.height: height

Sets the initial width and height of the directory window.

Default: width=300, height=100

Visualize*graph.width: width
Visualize*graph.height: height

Sets the initial width and height of the graph data window.

Default: width=400, height=400
TotalView User’s Guide 283

CHAPTER 11: X Resources
Visualize*graph*lines.set: {1 | 0}
Sets the initial state of the lines option in the graph window. When set (1), graphs
are drawn with lines connecting the data points.

Visualize*graph*points.set: {1 | 0}
Sets the initial state of the points option in the graph window. When set (1), graphs
are drawn with markers on each data point.

Visualize*surface.width: width
Visualize*surface.height: height

Sets the initial width and height of the surface data window.

Default: width=400, height=400

Visualize*surface*mesh.set: {1 | 0}
Sets the initial state of the mesh option in the surface window. When set (1), the
axis grid is projected onto the surface.

Visualize*surface*shade.set: {1 | 0}
Sets the initial state of the shade option in the surface window. When set (1), the
surface is shaded.

Visualize*surface*contour.set: {1 | 0}
Sets the initial state of the contour option in the surface window. When set (1),
contours are displayed on the surface.

Visualize*surface*zone.set: {1 | 0}
Sets the initial state of the zone option in the surface window. When set (1), the
surface is colored according to the value.

Visualize*surface*auto_reduce.set: {1 | 0}
Sets the initial state of the auto-reduce option in the surface window. When set (1),
large data-sets are reduced by averaging to speed display.
284 TotalView User’s Guide

Visualizer X Resources
Visualize*surface*xrt3dZoneMethod: {zonecontours | zonecells}
Specifies how the surface is colored. When set to zonecontours, the surface is
colored according to its contours. When set to zonecells, each cell in the mesh is
colored based on the average value in the cell.

Visualize*surface*xrt3dViewNormalized: {1 | 0}
When set (1), the view of the data-set (before zooming or translation) is maximized
to fit the window. Interactive rotation when this resource is set will look “jerky”
but will ensure no portion of the display is clipped. When this resource is cleared
(0), dynamic rotation will be smooth, but parts of the display (e.g., axes) may be
clipped at some viewing angles.

Visualize*surface*xrt3dXMeshFilter: n
Visualize*surface*xrt3dYMeshFilter: n

Specifies how to display the surface mesh. Every nth mesh line will be displayed,
where n must be an integer greater than or equal to 0. When set to 0, a value is
calculated automatically.

Default: 0
TotalView User’s Guide 285

CHAPTER 11: X Resources
286 TotalView User’s Guide

11

CHAPTER 12:

TotalView Command Syntax
This chapter summarizes the syntax of the totalview command. For the full syntax,
use the man totalview command to view the online version.

Synopsis totalview [filename [corefile]] [options]

Description The TotalView debugger is a source-level debugger with a graphic interface (based
on the X Window System) and features for debugging distributed programs,
multiprocess programs, and multithreaded programs. You need a workstation or
terminal running the X Window System to use TotalView. TotalView is available
on a number of different platforms.

Arguments filename Specifies the pathname of an executable to be
debugged. The name can be an absolute or relative
pathname. The executable must be compiled with
debugging symbols turned on, normally the –g
compiler switch. Any multiprocess programs that call
fork(), vfork(), or execve() should be linked with the
dbfork library.

corefile Specifies the name of a core file. Specify this argument
in addition to filename when you want to examine a
core file with TotalView:

totalview filename corefile [options]
TotalView User’s Guide 287

CHAPTER 12: TotalView Command Syntax
Options If you specify mutually exclusive options (such as –dynamic and –no_dynamic)
on the same command line, the last option listed is used. Some of these options
override TotalView X resources described in “X Resources” on page 263. In
options that contain underscores (_), you can usually use the option without the
underscores. For example, –nodynamic is the same as –no_dynamic, and
–arrowbgcolor is the same as –arrow_bg_color.

–a args Passes all subsequent arguments (specified by args) to
the program specified by filename. This option must be
the last one on the command line.

–arrow_bg_color color
Sets the background (outline) color of PC arrow to
color.

Default: black

–arrow_color color Sets the foreground (inner) color of PC arrow to color.

Default: yellow2

–background color Sets the general background color to color.

Default: white

–bg color Same as –background.

–barrier_color color
Sets the color of the process barrier breakpoint icon.

Default: blue

Note: The option, –Xresource=value, allows you to set the X
resource Xresource to value from the command line. For
example, to set totalview*stopAll to false, you could specify
the command line option –stopAll=false. Note that the string
“totalview*” is omitted from the command line. X resource
values set from the command line override settings in your
X resource file. For a complete list of X resources, see Chapter
11, “X Resources,” on page 263.
288 TotalView User’s Guide

totalview Options
–barrier_font_color color
Sets the color of the font used to show the H and Hold
indicators for held processes.

Default: blue

–barr_stop_all (Default) Enables process barrier breakpoints to stop
all related processes.

–no_barr_stop_all The process barrier breakpoint does not stop all related
processes.

–break_color color
Sets the color of “B” state to color.

Default: orange

–button_bg_color color
Sets the button background color to color.

Default: background color

–button_fg_color color
Sets the button foreground color to color.

Default: foreground color

–chase (Default) Displays dialog boxes at the mouse pointer.
To display dialog boxes centered in the upper third of
the screen, use –no_chase.

–no_chase Displays dialog boxes centered in the upper third of the
screen.

–color (Default) Enables TotalView use of color.

–no_color Disables all use color, and display using monochrome
black on white. This option overrides all other color-
related options.

–nc Same as –no_color.

–compiler_vars Alpha and SGI only. Show variables created by the
Fortran compiler, as well as those in the user’s program.
TotalView User’s Guide 289

CHAPTER 12: TotalView Command Syntax
–no_compiler_vars (Default) Do not show variables created by the Fortran
compiler.

Some Fortran compilers (Digital f90/f77, SGI 7.2
compilers) output debug information which describes
variables that the compiler itself has invented for
purposes such as passing the length of character*(*)
variables. By default, TotalView suppresses the display
of these compiler generated variables.

However you can specify the –compiler_vars option
or set the totalview*compilerVars X resource to true
to cause such variables to be displayed. This could be
useful if you are looking for a corruption of a run time
descriptor or are writing a compiler.

–dbfork (Default) Catches the fork(), vfork(), and execve()
system calls if your executable is linked with the
dbfork library.

–no_dbfork Does not catch fork(), vfork(), and execve() system
calls even if your executable is linked with the dbfork
library.

–debug_file consoleoutputfile
Redirects TotalView console output to a file named
consoleoutputfile.

Default: All TotalView console output is written to
stderr.

–demangler=compiler
Overrides the C++ demangler and mangler TotalView
uses by default. Table 30 lists override options.

Table 30. C++ Demangling Command Line Options

Option Meaning

–demangler=cset IBM xlC C++

–demangler=dec Digital C++

–demangler=gnu GNU C++
290 TotalView User’s Guide

totalview Options
–display displayname
Sets the name of the X Windows display to
displayname. For example, –display vinnie:0.0 will
display TotalView on the machine named “vinnie.”

Default: To the value of the DISPLAY environment
variable.

–dpvm Digital UNIX only: Enables support for debugging the
Digital UNIX implementation of Parallel Virtual
Machine (PVM) applications.

–no_dpvm Digital UNIX only: (Default) Disables support for
debugging the Digital UNIX implementation of PVM
applications.

–dump_core Allows TotalView to dump a core file when it gets an
internal error. Useful for debugging TotalView itself.

–no_dump_core (Default) Does not allow TotalView to dump a core file
when it gets an internal error.

–dynamic (Default) Loads symbols from shared libraries. This
option is available only on platforms that support
shared libraries.

–no_dynamic Does not load symbols from shared libraries when
reading dynamically linked executables. Setting this
option can cause the dbfork library to fail because
TotalView might not find the fork(), vfork(), and
execve() system calls.

–demangler=irix SGI IRIX C++

–demangler=kai KAI KCC C++ 3.2 or greater

–demangler=spro SunPro C++ 4.0 or greater

–demangler=sun Sun CFRONT C++

–demangler=usoft MicroSoft C++

Table 30. C++ Demangling Command Line Options (Continued)

Option Meaning
TotalView User’s Guide 291

CHAPTER 12: TotalView Command Syntax
–error_color color
Sets the color of “E”, “Z”, and “?” states to color.

Default: red

–eval_color color Sets the color of the EVAL action point signs to color.

Default: orange

–ext extension Specifies that files with the suffix extension are
preprocessor input files. TotalView already has built-
in extensions for C++ (.C, .cpp, .cc, .cxx), Fortran (.F),
lex (.l, .lex), and yacc (.y) files.

–font fontname Specifies the font to be used by TotalView.

Default: fixed

–fn fontname Same as –font.

–foreground color Sets the general foreground color (i.e., the text color)
to color.

Default: black

–fg color Same as –foreground.

–global_types (Default) Specifies that TotalView can assume that
type names are globally unique within a program and
that all type definitions with the same name are
identical. In C++, the standard asserts that this must be
true for standard conforming code.

If this option is set, TotalView will attempt to replace
an opaque type (struct foo *p;) declared in one module,
with an identically named defined type (struct foo { …
};) in a different module.

If TotalView has read the symbols for the module
containing the non-opaque type definition, then when
displaying variables declared with the opaque type,
TotalView will automatically display the variable
using the non-opaque type definition.
292 TotalView User’s Guide

totalview Options
–no_global_types Specifies that TotalView cannot assume that type
names are globally unique within a program. You
should specify this option if your code has multiple
different definitions of the same named type, since
otherwise TotalView is likely to pick the wrong
definition to substitute for an opaque type.

–grab Forces all keyboard input to go to an open dialog box.
Use this option if your window manager uses “click-
to-type” mode.

–no_grab (Default) Does not force keyboard input to an open
dialog box.

–grab_server (Default) TotalView will grab the X server when
posting menus.

–no_grab_server TotalView will not grab the X server when posting
menus. Useful for taking screen shots of TotalView’s
menus.

–hpf (Default) Enables debugging HPF code at the source
level.

–no_hpf Disables debugging HPF source code at the source
level.

–hpf_node Enables display of node on which HPF distributed array
element resides in the process window.

–no_hpf_node (Default) Disables display of node on which HPF
distributed array element resides in the process
window.

–ignore_control_c Ignores Control-C and prevents you from terminating
the TotalView process from an xterm window, which
is useful when your program catches the Control-C
signal (SIGINT).

–icc Same as –ignore_control_c.

–no_ignore_control_c
(Default) Catches Control-C and terminates your
TotalView debugging session. To override this, use
–ignore_control_c.

–nicc Same as –no_ignore_control_c.
TotalView User’s Guide 293

CHAPTER 12: TotalView Command Syntax
–iv Turns inverse video on.

–no_iv (Default) Turns inverse video off.

–kcc_classes (Default) Convert structure definitions output by the
KCC compiler into classes that show base classes, and
virtual base classes in the same way as other C++
compilers. See the description of the X resource
“totalview*kccClasses: {true | false}” on page 272 for
a description of the conversion performed by
TotalView.

–no_kcc_classes Do not convert structure definitions output by the KCC
compiler into classes. Virtual bases will show up as
pointers, rather than the data.

–lb (Default) Loads action points automatically from the
filename.TVD.breakpoints file, providing the file
exists.

–nlb Does not load action points automatically from an
action points file.

–mc Turns on menu caching. Use this option if your X server
supports menu caching. If menus appear blank the
second and subsequent times you display them, your X
server does not support menu caching.

–nmc (Default) Turns off menu caching.

–menu_arrow_color color
Sets the menu arrow color to color.

Default: blue or green

–message_queue (Default) Enable the display of MPI message queues
when debugging an MPI program.

–mqd Same as –message_queue.

–no_message_queue
Disable the display of MPI message queues when
debugging an MPI program. This might be useful if a
store corruption is overwriting the message queues and
causing TotalView to become confused.

–no_mqd Same as –no_message_queue.
294 TotalView User’s Guide

totalview Options
–mouse_bg_color color
Sets the mouse cursor background (mask) color to
color.

Default: white or black

–mouse_fg_color color
Sets the mouse cursor foreground (inner) color to color.

Default: red

–mult_color color Sets the color of MULT action point sign to color.

Default: purple

–parallel (Default) Enable handling of parallel program runtime
libraries such as MPI, PE and HPF.

–no_parallel Disable handling of parallel program runtime libraries
such as MPI, PE and HPF. This is useful for debugging
parallel programs as if they were single process
programs.

–pop_at_breakpoint
Sets the Open (or raise) process window at
breakpoint checkbox to be selected by default. See
“Handling Signals” on page 48.

–no_pop_at_breakpoint
(Default) Sets the Open (or raise) process window at
breakpoint checkbox to be deselected by default. See
“Handling Signals” on page 48.

–pop_on_error (Default) Sets the Open (or raise) process window on
error checkbox to be selected by default. See
“Handling Signals” on page 48.

–no_pop_on_error Sets the Open (or raise) process window on error
checkbox to be deselected by default. See “Handling
Signals” on page 48.

–pr Use pull-right menus.

–npr (Default) Use walking menus instead of pull-right
menus.
TotalView User’s Guide 295

CHAPTER 12: TotalView Command Syntax
–pvm Enables support for debugging the ORNL
implementation of Parallel Virtual Machine (PVM)
applications.

–no_pvm (Default) Disables support for debugging the ORNL
implementation of PVM applications.

–remote hostname[:portnumber]
Debugs an executable that is not running on the same
machine as TotalView. For hostname, you can specify
a TCP/IP hostname, such as vinnie, or a TCP/IP
address, such as 128.89.0.16. Optionally, you can
specify a TCP/IP port number for portnumber, such as
:4174. When you specify a port number, you disable
the auto-launch feature. For more information on the
auto-launch feature, see “The Auto-Launch Feature”
on page 64.

–r hostname[:portnumber]
Same as –remote.

–running_color color
Sets the color of “R”, “S”, “M”, and “I” states to color.

Default: green

–sb Saves action points automatically to an action points
file when you exit TotalView. The file is named
filename.TVD.breakpoints.

–nsb (Default) Does not save action points automatically to
an action points file when you exit.

–serial device[:options]
Debugs an executable that is not running on the same
machine as TotalView. For device, specify the device
name of a serial line, such as /dev/com1. Currently, the
only option you are allowed to specify is the baud rate,
which defaults to 38400. For more information on
debugging over a serial line, see “Debugging Over a
Serial Line” on page 72.
296 TotalView User’s Guide

totalview Options
–signal_handling_mode “action_list”
Modifies the way in which TotalView handles signals.
You must enclose the action_list string in quotation
marks to protect it from the shell. Refer to
“totalview*signalHandlingMode: action_list” on
page 278 for a description of the action_list argument.

–shm “action_list” Same as –signal_handling_mode.

–stop_all (Default) Sets the Stop All Related Processes when
Breakpoint Hit checkbox to be selected by default. To
override this option use –no_stop_all. See
“Breakpoints for Multiple Processes” on page 197.

–no_stop_all Sets the Stop All Related Processes when Breakpoint
Hit checkbox to be deselected by default. See
“Breakpoints for Multiple Processes” on page 197.

–stop_color color Sets the color of STOP and ASM action point signs to
color.

Default: red

–stopped_color color
Sets the color of “T” state to color.

Default: blue or yellow2

–text_color (Default) Turns text color use on.

–no_text_color Turns text color use off.

–title_color (Default) Turns title color use on.

–tc Same as –title_color.

–no_title_color Turns title color use off.

–no_tc Same as –no_title_color.

–user_threads (Default) Enable handling of user-level (M:N) thread
packages on systems where two-level (kernel and user)
thread scheduling is supported.
TotalView User’s Guide 297

CHAPTER 12: TotalView Command Syntax
–no_user_threads Disable handling of user-level (M:N) thread packages.
This option may be useful in situations where you need
to debug kernel-level threads, but in most cases, this
option is of little use on systems where two-level thread
scheduling is used.

–verbosity level Sets the verbosity level of TotalView generated
messages to level, which may be one of silent, error,
warning, or info.

Default: info
298 TotalView User’s Guide

12

CHAPTER 13:

TotalView Debugger Server
Command Syntax
This chapter summarizes the syntax of the TotalView Debugger Server command,
tvdsvr, which is used for remote debugging. For more information on remote
debugging, refer to “Starting the Debugger Server for Remote Debugging” on
page 64.

Synopsis tvdsvr {–server | –callback hostname:port | –serial device} [other options]

Description The tvdsvr debugger server allows TotalView to control and debug a program on
a remote machine. To accomplish this, the tvdsvr program must run on the remote
machine, and it must have access to the executables to be debugged. These
executables must have the same absolute pathname as the executable that
TotalView is debugging, or the PATH environment variable for tvdsvr must
include the directories containing the executables.

You must specify either the –server, –callback, or –serial option with the tvdsvr
command. By default, the TotalView debugger automatically launches tvdsvr
(known as the auto-launch feature) with the –callback option, and the server
establishes a connection with TotalView.

If you prefer not to use the auto-launch feature, you can start tvdsvr manually and
specify the –server option. Be sure to make note of the password that tvdsvr prints
out with the message:

pw = hexnumhigh:hexnumlow

TotalView will prompt you for hexnumhigh:hexnumlow later. By default, tvdsvr
automatically generates a password that is used when establishing connections. If
desired, you can use the –set_pw option to set a specific password.
TotalView User’s Guide 299

CHAPTER 13: TotalView Debugger Server Command Syntax
To connect to the tvdsvr from TotalView, you use the New Program Window and
must specify the hostname and TCP/IP port number, hostname:portnumber on
which tvdsvr is running. Then, TotalView prompts you for the password for
tvdsvr.

Options The following options determine the port number and password necessary for
TotalView to connect with tvdsvr.

–callback hostname:port
(Auto-launch feature only) Immediately establishes a
connection with the TotalView debugger that is
running on hostname and listening on port, where
hostname is either a hostname or TCP/IP address. If
tvdsvr cannot connect with TotalView, it exits. If you
specify the –port, –search_port, and –server options
with this option, tvdsvr ignores them.

–debug_file consoleoutputfile
Redirects TotalView Debugger Server console output
to a file named consoleoutputfile.

Default: All console output is written to stderr.

–dpvm Uses the Digital UNIX implementation of the Parallel
Virtual Machine (DPVM) library process as its input
channel and registers itself as the DPVM tasker.

Note: This option is not intended for users launching
tvdsvr manually. When you enable DPVM support
within TotalView, TotalView automatically uses this
option when it launches tvdsvr.

–port number Sets the TCP/IP port number on which tvdsvr should
communicate with totalview. If this TCP/IP port
number is busy, tvdsvr does not select an alternate port
number (that is, it communicates with nothing) unless
you also specify –search_port.

Default: 4142

–pvm Uses the ORNL implementation of the Parallel Virtual
Machine (PVM) library process as its input channel and
registers itself as the ORNL PVM tasker.
300 TotalView User’s Guide

tvdsvr Options
Note: This option is not intended for users launching
tvdsvr manually. When you enable PVM support
within TotalView, TotalView automatically uses this
option when it launches tvdsvr.

–search_port Searches for an available TCP/IP port number,
beginning with the default port (4142) or the port set
with the –port option and continuing until one is found.
When the port number is set, tvdsvr displays the chosen
port number with the following message:

port = number

–serial device[:options]
Waits for a serial line connection from TotalView. For
device, specify the device name of a serial line, such as
/dev/com1. Currently the only option you are allowed
to specify is the baud rate, which defaults to 38400. For
more information on debugging over a serial line, see
“Debugging Over a Serial Line” on page 72.

–server Listens for and accepts network connections on port
4142 (default). To use a different port, you must specify
the –port or –search_port options. To stop tvdsvr
from listening and accepting network connections, you
must terminate it by pressing Control-C in the terminal
window from which it was started or by using the kill
command.

–set_pw hexnumhigh:hexnumlow
Sets the password to the 64-bit number specified by the
two 32-bit numbers hexnumhigh and hexnumlow.When
a connection is established between tvdsvr and
TotalView, the 64-bit password passed by TotalView
must match the password set with this option. When
the password is set, tvdsvr displays the selected
number in the following message:

pw = hexnumhigh:hexnumlow

We recommend using this option to avoid connections
by other users.
TotalView User’s Guide 301

CHAPTER 13: TotalView Debugger Server Command Syntax
–verbosity level Sets the verbosity level of TotalView Debugger Server
generated messages to level, which may be one of
silent, error, warning, or info.

Default: info

Note: If necessary, you can disable password checking by
specifying the –set_pw 0:0 option with the tvdsvr command.
Disabling password checking is dangerous; it allows anyone
to connect to your server and start programs, including shell
commands, using your UID. Therefore, we do not
recommend disabling password checking.
302 TotalView User’s Guide

13

APPENDIX A:

Compilers and Environments
This appendix describes the compilers and parallel runtime environments that can
be used with this release of TotalView. You must refer to the TotalView release
notes included in the TotalView distribution for information on the specific
compiler and runtime environment supported by TotalView.

For information on supported operating systems, please refer to Appendix B,
“Operating Systems,” on page 321.

This appendix includes:

• Compilers and runtime environments that TotalView supports

• Command line options needed to compile with debugging symbols

• Compiling with exception data on Digital UNIX

• Linking with the dbfork library
TotalView User’s Guide 303

APPENDIX A: Compilers and Environments
Supported Compilers and Environments

Please refer to the release notes in your TotalView distribution for the latest
information about supported versions of the compilers and parallel runtime
environments listed here.

AIX on RS/6000
Systems

Table 31 lists the supported compilers and parallel runtime environments on IBM
RS/6000 systems running AIX.

Table 31. Supported Compilers and Environments on AIX

C compilers • IBM xlc C

• FSF GNU C

• Cygnus EGCS C

C++ compilers • IBM xlC C++

• FSF GNU C++

• KAI C++

• Cygnus EGCS C++

Fortran compilers • IBM xlf for Fortran 77

• IBM xlf90 for Fortran 90

Environments • Parallel Environment for AIX

• MPICH

• ORNL PVM

• Portland Group HPF
304 TotalView User’s Guide

Digital UNIX on
Digital Alpha
Systems

Table 32 lists the supported compilers and parallel runtime environments on
Digital Alpha systems running Digital UNIX.

Table 32. Supported Compilers and Environments on Digital UNIX

C compilers • Digital UNIX C

• FSF GNU C

• Cygnus EGCS C

C++ compilers • Digital UNIX C++

• KAI C++

• FSF GNU C++

• Cygnus EGCS C++

Fortran compilers • Digital UNIX Fortran 77

• Digital UNIX Fortran 90

 Environments • MPICH

• ORNL PVM

• Digital DPVM (PVM)
TotalView User’s Guide 305

APPENDIX A: Compilers and Environments
IRIX on SGI
MIPS Systems

Table 33 lists the supported compilers and parallel runtime environments on SGI
MIPS systems running IRIX.

Table 33. Supported Compilers and Environments on IRIX

C compilers • SGI MIPSpro C

• FSF GNU C

• Cygnus EGCS C

C++ compilers • SGI MIPSpro C++

• FSF GNU C++

• Cygnus EGCS C++

Fortran compilers • SGI MIPSpro Fortran 77

• SGI MIPSpro Fortran 90

Environments • MPICH

• SGI MPI (part of the Message Passing Toolkit)

• ORNL PVM

• Portland Group HPF
306 TotalView User’s Guide

SunOS 4 on
Solaris Systems

Table 34 lists the supported compilers and parallel runtime environments on
Solaris 1.x systems running SunOS 4.

Table 34. Supported Compilers and Environments on SunOS 4

C compilers • SunPro C

• Apogee C

• FSF GNU C

• Cygnus EGCS C

C++ compilers • SunPro C++

• Apogee C++

• FSF GNU C++

• Cygnus EGCS C++

Fortran compilers • SunPro Fortran 77

Environments • MPICH

• ORNL PVM
TotalView User’s Guide 307

APPENDIX A: Compilers and Environments
SunOS 5 on
SPARC Solaris
Systems

Table 35 lists the supported compilers and parallel runtime environments on
SPARC Solaris 2.x systems running SunOS 5.

Table 35. Supported Compilers and Environments on SunOS 5 SPARC

C compilers • SunPro C

• WorkShop C

• Apogee C

• FSF GNU C

• Cygnus EGCS C

C++ compilers • SunPro C++

• WorkShop C++

• KAI C++

• Apogee C++

• FSF GNU C++

• Cygnus EGCS C++

Fortran compilers • SunPro Fortran 77

• WorkShop Fortran 77

• WorkShop Fortran 90

Environments • MPICH

• ORNL PVM

• Portland Group HPF
308 TotalView User’s Guide

SunOS 5 on
Intel-x86 Solaris
Systems

Table 36 lists the supported compilers and parallel runtime environments on
SPARC Solaris 2.x systems running SunOS 5.

Table 36. Supported Compilers and Environments on SunOS 5 x86

C compilers • WorkShop C

• FSF GNU C

• Cygnus EGCS C

C++ compilers • WorkShop C++

• FSF GNU C++

• Cygnus EGCS C++

Fortran compilers • WorkShop Fortran 77

Environments • MPICH

• ORNL PVM
TotalView User’s Guide 309

APPENDIX A: Compilers and Environments
Compiling with Debugging Symbols

You need to compile programs with the –g switch and possibly other compiler
switches so that debugging symbols are included. This section shows the specific
compiler commands to use for each compiler that TotalView supports.

AIX on RS/6000
Systems

Table 37 lists the procedures to compile programs on IBM RS/6000 systems
running AIX.

1. When compiling with any of the IBM xl compilers, if your program
will be moved from its creation directory, or you do not want to set the
search directory path during debugging, pass the –qfullpath switch to the
compiler driver. For example: xlf –qfullpath –g –c program.f

2. When compiling with KCC for debugging, we recommend that you use
the +K0 option and not the –g option.

Table 37. Compiling with Debugging Symbols on AIX

Compiler Compiler Command Line

IBM xlc C xlc –g –c program.c 1

FSF GNU C or
Cygnus EGCS C

gcc –g –c program.c

IBM xlC C++ xlC –g –c program.cxx

KAI C++ KCC +K0 2 –qnofullpath 3 –c program.cxx

FSF GNU C++ or
Cygnus EGCS C++

g++ –g –c program.cxx

IBM xlf Fortran 77 xlf –g –c program.f 4

IBM xlf90 Fortran 90 xlf90 –g –c program.f90

Portland Group HPF pghpf –g –Mtv –c program.hpf
310 TotalView User’s Guide

3. When compiling with KCC, you must specify the –qnofullpath
option; KCC is a preprocessor that passes its output to the IBM xlc C
compiler that discards #line directives necessary for source level
debugging if –qfullpath is specified.

4. When compiling Fortran programs using the C preprocessor, pass the
–d switch to the compiler driver. For example: xlf –d –g –c program.F
TotalView User’s Guide 311

APPENDIX A: Compilers and Environments
Digital UNIX on
Digital Alpha
Systems

Table 38 lists the procedures to compile programs on Digital Alpha system running
Digital UNIX.

1. When compiling with KCC for debugging, we recommend that you use the
+K0 option and not the –g option.

Table 38. Compiling with Debugging Symbols on Digital UNIX

Compiler Compiler Command Line

Digital UNIX C cc –g –c program.c

FSF GNU C or
Cygnus EGCS C

gcc –g –c program.c

Digital UNIX C++ cxx –g –c program.cxx

KAI C++ KCC +K0 –c program.cxx 1

FSF GNU C++ or
Cygnus EGCS C++

g++ –g –c program.cxx

Digital UNIX Fortran 77 f77 –g –c program.f

Digital UNIX Fortran 90 f90 –g –c program.f90
312 TotalView User’s Guide

IRIX on SGI
MIPS Systems

Table 39 lists the procedures to compile programs on SGI MIPS systems running
IRIX.

1. Compiling with –n32 or –64 is supported. TotalView does not support
compiling with –32, which is the default for some compilers. You must specify
either –n32 or –64.

2. When compiling with KCC for debugging, we recommend that you use the
+K0 option and not the –g option.

3. You must compiler your programs with the pghpf –64 compiler option; on
SGI IRIX, TotalView can debug 64-bit executables only.

Table 39. Compiling with Debugging Symbols on IRIX-MIPS

Compiler Compiler Command Line 1

SGI MIPSpro C cc –n32 –g –c program.c
cc –64 –g –c program.c

FSF GNU C or
Cygnus EGCS C

gcc –g –c program.c

SGI MIPSpro C++ CC –n32 –g –c program.cxx
CC –64 –g –c program.cxx

KAI C++ KCC +K0 –c program.cxx 2

FSF GNU C++ or
Cygnus EGCS C++

gcc –g –c program.cxx

SGI MIPSpro77 f77 –n32 –g –c program.f
f77 –64 –g –c program.f

SGI MIPSpro 90 f90 –n32 –g –c program.f90
f90 –64 –g –c program.f90

Portland Group HPF pghpf –g –64 –Mtv –c program.hpf 3
TotalView User’s Guide 313

APPENDIX A: Compilers and Environments
SunOS 4 on
Solaris Systems

Table 40 lists the procedures to compile programs on SunOS 4 Solaris 1.x systems
running SunOS 4.

Table 40. Compiling with Debugging Symbols on SunOS 4

Compiler Compiler Command Line

SunPro C cc –g –c program.c

Apogee C apcc –g –c program.c

FSF GNU C or
Cygnus EGCS C

gcc –g –c program.c

SunPro C++ CC –g –c program.cxx

Apogee C++ apCC –g –c program.cxx

FSF GNU C++ or
Cygnus EGCS C++

g++ –g –c program.cxx

SunPro Fortran 77 f77 –g –c program.f
314 TotalView User’s Guide

SunOS 5 on
SPARC or Intel-
x86 Solaris
Systems

Table 41 lists the procedures to compile programs on SunOS 5 SPARC or Intel-
x86.

1. On SunOS 5 Intel-x86 Solaris systems, TotalView supports only the
WorkShop C, C++, and f77 compilers, and the GNU or EGCS C and C++
compilers.

2. KCC is supported on SunOS 5 SPARC only.

3. When compiling with KCC for debugging, we recommend that you use the
+K0 option and not the –g option.

4. PGHPF is supported on SunOS 5 SPARC only.

Table 41. Compiling with Debugging Symbols on SunOS 5

Compiler 1 Compiler Command Line

SunPro C or
WorkShop C

cc –g –c program.c

Apogee C apcc –g –c program.c

FSF GNU C or
Cygnus EGCS C

gcc –g –c program.c

SunPro C++ or
WorkShop C

CC –g –c program.cxx

Apogee C++ apCC –g –c program.cxx

FSF GNU C++ or
Cygnus EGCS C++

g++ –g –c program.cxx

KAI C++ 2 KCC +K0 –c program.cxx 3

SunPro Fortran 77 or
WorkShop Fortran 77

f77 –g –c program.f

WorkShop Fortran 90 f90 –g –c program.f90

Portland Group HPF 4 pghpf –g –Mtv –c program.hpf
TotalView User’s Guide 315

APPENDIX A: Compilers and Environments
Compiling with Exception Data on Alpha
Digital UNIX

If you receive the following error message when you load an executable into
TotalView, you may need to compile your program so that exception data is
included:

“Cannot find exception information. Stack backtraces may not be correct.”

To provide a complete stack backtrace in all situations, TotalView needs the
exception data to be included in the compiled executable. To compile with
exception data, you need to use the following switches:

% cc –Wl,–u,_fpdata_size program.c

Where:

–Wl Passes the arguments that follow to another
compilation phase (–W), which in this case is the linker
(l). Each argument is separated by a comma (,).

,–u Causes the linker to mark the next argument
(_fpdata_size) as undefined.

,_fpdata_size Marks the _fpdata_size variable as undefined, which
forces the exception data into the executable.

Compiling with exception data increases the size of your executable slightly. If
you choose not to compile with exception data, TotalView can provide correct
stack backtraces in most situations, but not in all situations.
316 TotalView User’s Guide

Linking with the dbfork Library

If your program uses the fork() and execve() system calls, and you want to debug
the child processes, you need to link programs with the dbfork library.

AIX on RS/6000
Systems

Add one of the following arguments to the command that you use to link your
programs:

• /usr/totalview/lib/libdbfork.a

• –L/usr/totalview/lib –ldbfork

/usr/totalview/lib/libdbfork.a –bkeepfile:/usr/totalview/lib/libdbfork.a

–L/usr/totalview/lib –ldbfork –bkeepfile:/usr/totalview/lib/libdbfork.a

For example:

% cc –o program program.c –L/usr/totalview/lib –ldbfork
–bkeepfile:/usr/totalview/lib/libdbfork.a

When you use gcc or g++, use the –Wl,–bkeepfile option instead of –bkeepfile,
which will pass the same option to the binder. For example:

% cc –o program program.c –L/usr/totalview/lib –ldbfork
–Wl,–bkeepfile:/usr/totalview/lib/libdbfork.a

Linking C++
Programs with
dbfork

The binder option –bkeepfile currently cannot be used with the IBM xlC C++
compiler. The compiler passes all binder options to an additional pass called
munch, which cannot handle the –bkeepfile option.

To work around this problem, we have provided the C++ header file libdbfork.h.
You must include this file somewhere in your C++ program, in order to force the
components of the dbfork library to be kept in your executable. The file libdbfork.h
is included only with TotalView for the RS/6000 platform, so the include should
be placed under a #ifdef _AIX. For example:
TotalView User’s Guide 317

APPENDIX A: Compilers and Environments
#ifdef _AIX
#include “/usr/totalview/lib/libdbfork.h”
#endif
int main (int argc, char *argv[])
{
}

Alpha Digital
UNIX

Add one of the following arguments to the command that you use to link your
programs:

/opt/totalview/lib/libdbfork.a

–L/opt/totalview/lib –ldbfork.a

For example:

% cc –o program program.c –L/opt/totalview/lib –ldbfork

As an alternative, you can set the LD_LIBRARY_PATH environment variable
and omit the –L option on the command line:

setenv LD_LIBRARY_PATH /opt/totalview/lib

SunOS 4 Add one of the following arguments to the command that you use to link your
programs:

/usr/totalview/lib/libdbfork.a

–L/usr/totalview/lib –ldbfork.a

For example:

% cc –o program program.c –L/usr/totalview/lib –ldbfork

As an alternative, you can set the LD_LIBRARY_PATH environment variable
and omit the –L option on the command line:

setenv LD_LIBRARY_PATH /usr/totalview/lib
318 TotalView User’s Guide

SunOS 5
SPARC or Intel-
x86

Add one of the following arguments to the command that you use to link your
programs:

/opt/totalview/lib/libdbfork.a

–L/opt/totalview/lib –ldbfork.a

For example:

% cc –o program program.c –L/opt/totalview/lib –ldbfork

As an alternative, you can set the LD_LIBRARY_PATH environment variable
and omit the –L option on the command line:

setenv LD_LIBRARY_PATH /opt/totalview/lib

IRIX6-MIPS Add one of the following arguments to the command that you use to link your
programs.

If you are compiling your code with –n32, use the following arguments:

/opt/totalview/lib/libdbfork_n32.a

–L/opt/totalview/lib –ldbfork_n32.a

For example:

% cc –n32 –o program program.c –L/opt/totalview/lib –ldbfork_n32

If you are compiling your code with –64, use the following arguments:

/opt/totalview/lib/libdbfork.a_n64.a

–L/opt/totalview/lib –ldbfork_n64.a

For example:

% cc –64 –o program program.c –L/opt/totalview/lib –ldbfork_n64

As an alternative, you can set the LD_LIBRARY_PATH environment variable
and omit the –L option on the command line:

setenv LD_LIBRARY_PATH /opt/totalview/lib
TotalView User’s Guide 319

APPENDIX A: Compilers and Environments
320 TotalView User’s Guide

13

APPENDIX B:

Operating Systems
This appendix describes the operating system features that can be used with
TotalView. This appendix includes the following topics:

• Supported versions

• Mounting the /proc file system (Digital UNIX, IRIX, and SunOS 5 only)

• Swap space

• Shared libraries

• Remapping keys (Sun keyboards only)

• Capabilities and characteristics

• Expression system support
TotalView User’s Guide 321

APPENDIX B: Operating Systems
Supported Operating Systems

For a complete list of hardware and software requirements including required OS
patches and restrictions, see the TotalView release notes in your software
distribution. This version of TotalView supports the following operating system
versions:

• Digital Alpha workstations running Digital UNIX versions V4.0, V4.0A,
V4.0B, V4.0C and V4.0D. All versions require patches See “Digital UNIX
Patch Procedures” in the TotalView Release Notes for instructions.

• IBM RS/6000 and SP systems running AIX versions 4.1, 4.2, 4.3, or 4.3.1

• Sun Sparc SunOS 4 (Solaris 1.x) systems running SunOS versions 4.1.1,
4.1.2, 4.1.3, or 4.1.4

• Sun Sparc SunOS 5 (Solaris 2.x) systems running SunOS versions 5.5, 5.5.1,
or 5.6. (Solaris 2.5, 2.5.1, or 2.6)

• Intel-x86 SunOS 5 (Solaris 2.x) systems running SunOS versions 5.6. (Solaris
2.6)

• SGI IRIX 6.2, 6.3, 6.4, or 6.5 on any MIPS R4000, R4400, R4600, R5000,
R8000, or R10000 processor-based systems

• QSW CS-2 based on Sparc Solaris 2.5.1 or 2.6

Note: QSW CS-2 TotalView is nearly identical to TotalView on
Sun Solaris 2.x systems.

Please see the TotalView Supplement for CS-2 Users for more
information of CS-2 TotalView specific features.
322 TotalView User’s Guide

Mounting the /proc File System
Mounting the /proc File System

Digital UNIX,
SunOS 5, and
IRIX

To debug programs on Digital UNIX, SunOS 5, and IRIX with TotalView, you
need to mount the /proc file system.

If you receive one of the following errors from TotalView, the /proc file system
might not be mounted:

• job_t::launch, creating process: process not found

• Error launching process while trying to read dynamic symbols

• Creating Process... Process not found
Clearing Thrown Flag
Operation Attempted on an unbound d_process object.

To determine whether the /proc file system is mounted, enter the appropriate
command from Table 42.

If you receive the message shown from the mount command, the /proc file system
is mounted.

Digital UNIX
and SunOS 5

To make sure that the /proc file system is mounted each time your system boots,
add the appropriate line from Table 43 to the appropriate file. Then, to mount the
/proc file system, enter the following command:

% /sbin/mount /proc

Table 42. Commands for Determining Whether /proc is Mounted

Operating System Command

Digital UNIX % /sbin/mount –t procfs
/proc on /proc type procfs (rw)

SunOS 5 % /sbin/mount | grep /proc
/proc on /proc read/write/setuid on Thu Jun 9 18:2208
1994

IRIX % /sbin/mount | grep /proc
/proc on /proc type proc (rw)
TotalView User’s Guide 323

APPENDIX B: Operating Systems
IRIX To make sure that the /proc file system is mounted each time your system boots,
make sure that /etc/rc2 issues the /etc/mntproc command. Then, to mount the
/proc file system, enter the following command:

% /etc/mntproc

Swap Space

Debugging large programs can exhaust the swap space on your machine. If you
run out of swap space, TotalView exits with a fatal error, such as:

• Fatal Error: Out of space trying to allocate

This error indicates that either:

• TotalView failed to allocate dynamic memory. It can occur anytime
during a TotalView session.

• The data size limit in the C shell is too small. You can use the C shell’s
limit command to increase the data size limit. For example:

% limit datasize unlimited

• job_t::launch, creating process: Operation failed

This error indicates that the fork() or execve() system call failed while
TotalView was creating a process to debug. It can happen when TotalView
tries to create a process.

Table 43. Commands for Automatically Mounting /proc File System

Operating System Name of File Line to add

Digital UNIX /etc/fstab /proc /proc procfs rw 0 0

SunOS 5 /etc/vfstab /proc - /proc proc - no -
324 TotalView User’s Guide

Swap Space
Digital UNIX To find out how much swap space has been allocated and is currently being used,
use the swapon command on Digital UNIX:

% /sbin/swapon –s

Total swap allocation:
Allocated space: 85170 pages (665MB)
Reserved space: 14216 pages (16%)
Available space: 70954 pages (83%)

Swap partition /dev/rz3b:
Allocated space: 16384 pages (128MB)
In-use space: 2610 pages (15%)
Free space: 13774 pages (84%)

Swap partition /dev/rz3h:
Allocated space: 52402 pages (409MB)
In-use space: 2575 pages (4%)
Free space: 49827 pages (95%)

Swap partition /dev/rz1b:
Allocated space: 16384 pages (128MB)
In-use space: 2592 pages (15%)
Free space: 13792 pages (84%)

In this example, 665MB of swap has been allocated, and 106MB of it is currently
in use.

To find out how much swap space is in use while you are running TotalView:

% /bin/ps –o LFMT

For example, in this case the value in the VSZ column is 4.45MB:

UID PID PPID CP PRI NI VSZ RSS WCHAN S TT TIME COMMAND

12270 5340 5293 0 41 0 4.45M 1.27 event S p0 0:00.17 totalview a.out

To add swap space, use the /sbin/swapon(8) command. You must be root to use
this command. For more information, refer to the on-line manual page for this
command.
TotalView User’s Guide 325

APPENDIX B: Operating Systems
AIX To find out how much swap space has been allocated and is currently being used,
use the pstat command:

% /usr/sbin/pstat –s

PAGE SPACE:

USED PAGES FREE PAGES
7555 115325

In this example, 122880 (7555 + 115325) pages of swap have been allocated. 7555
pages are currently in use and 115325 pages are free.

To find out how much swap space is in use while you are running TotalView:

1. Start TotalView with a large executable:

% totalview executable

2. Press Control-Z to suspend TotalView.

3. Use the following command to see how much swap space TotalView is using:

% ps u

For example, in this case the value in the SZ column is 5476KB:

USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND

smith 15080 0.0 6.0 5476 5476 pts/1 T 09:31:43 0:00 totalview executable

To add swap space, use the AIX system management tool, smit. Use the following
path through the smit menus:

System Storage Management »Logical Volume Manager »Paging Space

SunOS 4 To find out how much swap space has been allocated and is currently being used,
use the pstat command:

% /etc/pstat –T
136/582 files
2/ 26 inodes
38/138 processes
5872/157896 swap
326 TotalView User’s Guide

Swap Space
In this example, 157896K of swap has been allocated, and 5872K of it is currently
in use.

To find out how much swap space is in use while you are running TotalView:

1. Start TotalView with a large executable:

% totalview executable

2. Press Control-Z to suspend TotalView.

3. Use the following command to see how much swap space TotalView is using:

% ps u

For example, in this case the value in the SZ column is 66043K, or 66MB:

USER PID %CPU %MEM SZ RSS TT STAT START TIME COMMAND

smith 13276 3.5 17.9660439844 pf S 15:40 0:51 totalview executable

To add swap space, use the mkfile(8) and swapon(8) commands. You must be
root to use these commands. For more information, refer to the online manual
pages for these commands.

SunOS 5 To find out how much swap space has been allocated and is currently being used,
use the swap command:

% /usr/sbin/swap –s
total: 16192K bytes allocated + 7140K bytes
reserved = 23332K used, 63456K available

To find out how much swap space is in use while you are running TotalView:

1. Start TotalView with a large executable:

% totalview executable

2. Press Control-Z to suspend TotalView.

3. Use the following command to see how much swap space TotalView is using:

% /bin/ps –l
TotalView User’s Guide 327

APPENDIX B: Operating Systems
For example, in this case the value in the SZ column is 1036 pages, with each
page being 4K in size.

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME COMD

8 T 14694 3456 2558 80 1 20 ff451000 1036 pts/4 0:01 totalview

To add swap space, use the mkfile(1M) and swap(1M) commands. You must be
root to use these commands. For more information, refer to the on-line manual
pages for these commands.

IRIX To find out how much swap space has been allocated and is currently being used,
use the swap command:

% /sbin/swap –s
total: 1.55m allocated + 124.47m add'l reserved =
126.02m bytes used, 250.94m bytes available

To find out how much swap space is in use while you are running TotalView:

1. Start TotalView with a large executable:

% totalview executable

2. Press Control-Z to suspend TotalView.

3. Use the following command to see how much swap space TotalView is using:

% /bin/ps –l

For example, in this case the value in the SZ column is 584 pages.

F S UID PID PPID C PRI NI P SZ:RSS WCHAN TTY TIME CMD

b0 T 14694 26236 26271 5 62 20 * 584:373 - ttyq6 0:01 totalview

Use the following command to determine the number of bytes in a page:

% sysconf PAGESIZE

To add swap space, use the mkfile(1M) and swap(1M) commands. You must be
root to use these commands. For more information, refer to the on-line manual
pages for these commands.
328 TotalView User’s Guide

Shared Libraries
Shared Libraries

TotalView supports dynamically linked executables, that is, executables that are
linked with shared libraries.

When you start TotalView with a dynamically linked executable, TotalView loads
an additional set of symbols for the shared library, as indicated in the shell from
which you started TotalView. To accomplish this, TotalView:

• Runs a sample process and discards it.

• Reads information from the process.

• Reads the symbol table for each library.

When you create a process without starting it, and the process does not include
shared libraries, the program counter points to the entry point of the process, the
start routine. If the process does include shared libraries, however, TotalView
takes the following actions:

• Runs the dynamic loader (SunOS 4 and SunOS 5: ld.so, Digital UNIX:
/sbin/loader, IRIX: rld).

• Sets the PC to point to the location after the invocation of the dynamic loader
but before the invocation of the main routine.

When you attach to a process that uses shared libraries, TotalView takes the
following actions:

• If you attached to the process after the dynamic loader ran, then TotalView
loads the dynamic symbols for the shared library.

• If you attached to the process before it runs the dynamic loader, TotalView
allows the process to run the dynamic loader to completion. Then, TotalView
loads the dynamic symbols for the shared library.

Note: TotalView does not read the symbol table of shared libraries
that are loaded at runtime using the following functions:

For Digital UNIX, SunOS 4, SunOS 5, and IRIX: dlopen()
function

For AIX: dlopen() or load() functions.
TotalView User’s Guide 329

APPENDIX B: Operating Systems
If desired, you can suppress the use of shared libraries by starting TotalView with
the –no_dynamic option. Refer to Chapter 12, “TotalView Command Syntax,”
on page 287 for details on this TotalView start-up option.

If you believe that a shared library has changed since you started a Totalview
session, you can use the Reload Shared Library Information command on the
Current/Update/Relative submenu to reload library symbol tables. Be aware that
only some systems such as AIX permit you to reload library information.

Remapping Keys

On the SunOS 4 and SunOS 5 keyboards, you may need to remap the page-up and
page-down keys to the Prior and Next keysym so that you can scroll TotalView
windows with the page-up and page-down keys. To do so, add the following lines
to your X Window System start-up file:

Remap F29/F35 to PgUp/PgDn
xmodmap -e 'keysym F29 = Prior'
xmodmap -e 'keysym F35 = Next'

Expression System

Depending on the target platform, TotalView supports:

• An interpreted expression system only

• Both an interpreted and a compiled expression system

Unless stated otherwise below, TotalView supports interpreted expressions only.
See “Interpreted vs. Compiled Expressions” on page 209 for more information on
the differences between interpreted and compiled expressions.

AIX On AIX, TotalView supports compiled and interpreted expressions. TotalView
also supports assembler in expressions.
330 TotalView User’s Guide

Expression System
Digital UNIX On Digital Unix, TotalView supports compiled and interpreted expressions.
TotalView also supports Assembler in expressions.

Expression on
the Power

Some program functions called from the TotalView expression system on the
Power architecture cannot have floating-point arguments which are passed by
value. However, in functions with a variable number of arguments, floating-point
arguments can be in the varying part of the argument list. For example, you can
include floating-point arguments with calls to printf:

double d = 3.14159;
printf("d = %f\n", d);
TotalView User’s Guide 331

APPENDIX B: Operating Systems
332 TotalView User’s Guide

13

APPENDIX C:

Architectures
This appendix describes the architectures TotalView supports, including:

• Power

• Alpha

• SPARC

• MIPS

• Intel-x86 (Intel 80386, 80486 and Pentium processors)

It includes the following topics for each architecture:

• General registers

• Floating-point registers

• Floating-point format
TotalView User’s Guide 333

APPENDIX C: Architectures
Power

Power General
Registers

TotalView displays Power general registers in the stack frame pane of the process
window. Table 44 describes how TotalView treats each general register, and the
actions you can take with each register.

Table 44. Power General Purpose Integer Registers

Register Description
Data
Type Edit Dive

Specify in
Expression

R0 General register 0 <int> yes yes $r0

SP Stack pointer <int> yes yes $sp

RTOC TOC pointer <int> yes yes $rtoc

R3 – R31 General registers 3 – 31 <int> yes yes $r3 – $r31

INUM <int> yes no $inum

PC Program counter <code>[] no yes $pc

SRR1 Machine status
save/restore register

<int> yes no $srr1

LR Link register <int> yes no $lr

CTR Counter register <int> yes no $ctr

CR Condition register <int> yes no $cr

XER Integer exception register <int> yes no $xer

DAR Data address register <int> yes no $dar

MQ MQ register <int> yes no $mq

MSR Machine state register <int> yes no $msr

SEG0 – SEG9 Segment registers 0 – 9 <int> yes no $seg0 – $seg9
334 TotalView User’s Guide

Power
Power MSR
Register

For your convenience, TotalView interprets the bit settings of the Power MSR
register. You can edit the value of the MSR and set it to any of the bit settings
outlined in Table 45.

SG10 – SG15 Segment registers 10 –15 <int> yes no $sg10 – $sg15

SCNT SS_COUNT <int> yes no $scnt

SAD1 SS_ADDR 1 <int> yes no $sad1

SAD2 SS_ADDR 2 <int> yes no $sad2

SCD1 SS_CODE 1 <int> yes no $scd1

SCD2 SS_CODE 2 <int> yes no $scd2

TID <int> yes no

Table 44. Power General Purpose Integer Registers (Continued)

Register Description
Data
Type Edit Dive

Specify in
Expression

Table 45. Power MSR Register Bit Settings

Value Bit Setting Meaning

0x00040000 POW Power management enable

0x00020000 TGPR Temporary GPR mapping

0x00010000 ILE Exception little-endian mode

0x00008000 EE External interrupt enable

0x00004000 PR Privilege level

0x00002000 FP Floating-point available

0x00001000 ME Machine check enable

0x00000800 FE0 Floating-point exception mode 0
TotalView User’s Guide 335

APPENDIX C: Architectures
Power Floating-
Point Registers

TotalView displays the Power floating-point registers in the stack frame pane of
the process window. Table 46 describes how TotalView treats each floating-point
register, and the actions you can take with each register.

0x00000400 SE Single-step trace enable

0x00000200 BE Branch trace enable

0x00000100 FE1 Floating-point exception mode 1

0x00000040 IP Exception prefix

0x00000020 IR Instruction address translation

0x00000010 DR Data address translation

0x00000002 RI Recoverable exception

0x00000001 LE Little-endian mode enable

Table 45. Power MSR Register Bit Settings (Continued)

Value Bit Setting Meaning

Table 46. Power Floating-Point Registers

Register Description Data Type Edit Dive
Specify in
Expression

F0 – F31 Floating-point registers 0 – 31 <double> yes yes $f0 – $f31

FPSCR Floating-point status register <int> yes no $fpscr

FPSCR2 Floating-point status register 2 <int> yes no $fpscr2
336 TotalView User’s Guide

Power
Power FPSCR
Register

For your convenience, TotalView interprets the bit settings of the Power FPSCR
register. You can edit the value of the FPSCR and set it to any of the bit settings
outlined in Table 47.

Table 47. Power FPSCR Register Bit Settings

Value Bit Setting Meaning

0x80000000 FX Floating-point exception summary

0x40000000 FEX Floating-point enabled exception summary

0x20000000 VX Floating-point invalid operation exception summary

0x10000000 OX Floating-point overflow exception

0x08000000 UX Floating-point underflow exception

0x04000000 ZX Floating-point zero divide exception

0x02000000 XX Floating-point inexact exception

0x01000000 VXSNAN Floating-point invalid operation exception for SNaN

0x00800000 VXISI Floating-point invalid operation exception: ∞ − ∞
0x00400000 VXIDI Floating-point invalid operation exception: ∞ / ∞
0x00200000 VXZDZ Floating-point invalid operation exception: 0 / 0

0x00100000 VXIMZ Floating-point invalid operation exception: ∞ * ∞
0x00080000 VXVC Floating-point invalid operation exception: invalid

compare

0x00040000 FR Floating-point fraction rounded

0x00020000 FI Floating-point fraction inexact

0x00010000 FPRF=(C) Floating-point result class descriptor

0x00008000 FPRF=(L) Floating-point less than or negative

0x00004000 FPRF=(G) Floating-point greater than or positive
TotalView User’s Guide 337

APPENDIX C: Architectures
0x00002000 FPRF=(E) Floating-point equal or zero

0x00001000 FPRF=(U) Floating-point unordered or NaN

0x00011000 FPRF=(QNAN) Quiet NaN; alias for FPRF=(C+U)

0x00009000 FPRF=(-INF) -Infinity; alias for FPRF=(L+U)

0x00008000 FPRF=(-NORM) -Normalized number; alias for FPRF=(L)

0x00018000 FPRF=(-DENORM) -Denormalized number; alias for FPRF=(C+L)

0x00012000 FPRF=(-ZERO) -Zero; alias for FPRF=(C+E)

0x00002000 FPRF=(+ZERO) +Zero; alias for FPRF=(E)

0x00014000 FPRF=(+DENORM) +Denormalized number; alias for FPRF=(C+G)

0x00004000 FPRF=(+NORM) +Normalized number; alias for FPRF=(G)

0x00005000 FPRF=(+INF) +Infinity; alias for FPRF=(G+U)

0x00000400 VXSOFT Floating-point invalid operation exception: software
request

0x00000200 VXSQRT Floating-point invalid operation exception: square
root

0x00000100 VXCVI Floating-point invalid operation exception: invalid
integer convert

0x00000080 VE Floating-point invalid operation exception enable

0x00000040 OE Floating-point overflow exception enable

0x00000020 UE Floating-point underflow exception enable

0x00000010 ZE Floating-point zero divide exception enable

0x00000008 XE Floating-point inexact exception enable

Table 47. Power FPSCR Register Bit Settings (Continued)

Value Bit Setting Meaning
338 TotalView User’s Guide

Power
Using the Power
FPSCR Register

On AIX, if you compile your program to catch floating point exceptions (IBM
compiler -qflttrap option), you can change the value of the FPSCR within
TotalView to customize the exception handling for your program.

For example, if your program inadvertently divides by zero, you can edit the bit
setting of the FPSCR register in the stack frame pane. In this case, you would
change the bit setting for the FPSCR to include 0x10 (as shown in Table 47) so
that TotalView traps the “divide by zero” exception. The string displayed next to
the FPSR register should now include “ZE”. Now, when your program divides by
zero, it receives a SIGTRAP signal, which will be caught by TotalView. See
Chapter 3, “Setting Up a Debugging Session,” on page 35 and “Handling Signals”
on page 48 for more information. If you did not set the bit for trapping divide by
zero or you did not compile to catch floating point exceptions, your program would
not stop and the processor would set the “ZX” bit.

Power Floating-
Point Format

The Power architecture supports the IEEE floating-point format.

0x00000004 NI Floating-point non-IEEE mode enable

0x00000000 RN=NEAR Round to nearest

0x00000001 RN=ZERO Round toward zero

0x00000002 RN=PINF Round toward +infinity

0x00000003 RN=NINF Round toward -infinity

Table 47. Power FPSCR Register Bit Settings (Continued)

Value Bit Setting Meaning
TotalView User’s Guide 339

APPENDIX C: Architectures
SPARC

SPARC General
Registers

TotalView displays the SPARC general registers in the stack frame pane of the
process window. Table 48 describes how TotalView treats each general register,
and the actions you can take with each register.

Table 48. SPARC General Registers

Register Description Data Type Edit Dive
Specify in
Expression

G0 Global zero register <int> no no $g0

G1 – G7 Global registers <int> yes yes $g1 – $g7

O0 – O5 Outgoing parameter registers <int> yes yes $o0 – $o5

SP Stack pointer <int> yes yes $sp

O7 Temporary register <int> yes yes $o7

L0 – L7 Local registers <int> yes yes $l0 – $l7

I0 – I5 Incoming parameter registers <int> yes yes $i0 – $i5

FP Frame pointer <int> yes yes $fp

I7 Return address <int> yes yes $i7

PSR Processor status register <int> yes no $psr

Y Y register <int> yes yes $y

WIM WIM register <int> no no

TBR TBR register <int> no no

PC Program counter <code>[] no yes $pc

nPC Next program counter <code>[] no yes $npc
340 TotalView User’s Guide

SPARC
SPARC PSR
Register

For your convenience, TotalView interprets the bit settings of the SPARC PSR
register. You can edit the value of the PSR and set some of the bits outlined in
Table 49.

SPARC
Floating-Point
Registers

TotalView displays the SPARC floating-point registers in the stack frame pane of
the process window. Table 50 describes how TotalView treats each floating-point
register, and the actions you can take with each register.

Table 49. SPARC PSR Register Bit Settings

Value Bit Setting Meaning

ET 0x00000020 Traps enabled

PS 0x00000040 Previous supervisor

S 0x00000080 Supervisor mode

EF 0x00001000 Floating-point unit enabled

EC 0x00002000 Coprocessor enabled

C 0x00100000 Carry condition code

V 0x00200000 Overflow condition code

Z 0x00400000 Zero condition code

N 0x00800000 Negative condition code

Table 50. SPARC Floating-Point Registers

Register Description Data Type Edit Dive
Specify in
Expression

F0 – F31 Floating-point registers (f registers), used
singly1

<float> yes yes $f0 – $f31

F0/F1 –
F30/F31

Floating point registers (f registers), used
as pairs1

<double> yes yes $f0_f1 –
$f30_f31
TotalView User’s Guide 341

APPENDIX C: Architectures
1. TotalView allows you to use these registers singly or in pairs, depending on how they are used by your
program. For example, if you use F1 by itself, its type is <float>, but if you use the F0/F1 pair, its type is
<double>.

SPARC FPSR
Register

For your convenience, TotalView interprets the bit settings of the SPARC FPSR
register. You can edit the value of the FPSR and set it to any of the bit settings
outlined in Table 51.

FPCR Floating-point control register <int> no no $fpcr

FPSR Floating-point status register <int> yes no $fpsr

Table 50. SPARC Floating-Point Registers (Continued)

Register Description Data Type Edit Dive
Specify in
Expression

Table 51. SPARC FPSR Register Bit Settings

Value Bit Setting Meaning

CEXC=NX 0x00000001 Current inexact exception

CEXC=DZ 0x00000002 Current divide by zero exception

CEXC=UF 0x00000004 Current underflow exception

CEXC=OF 0x00000008 Current overflow exception

CEXC=NV 0x00000010 Current invalid exception

AEXC=NX 0x00000020 Accrued inexact exception

AEXC=DZ 0x00000040 Accrued divide by zero exception

AEXC=UF 0x00000080 Accrued underflow exception

AEXC=OF 0x00000100 Accrued overflow exception

AEXC=NV 0x00000200 Accrued invalid exception

EQ 0x00000000 Floating-point condition =
342 TotalView User’s Guide

SPARC
LT 0x00000400 Floating-point condition <

GT 0x00000800 Floating-point condition >

UN 0x00000c00 Floating-point condition unordered

QNE 0x00002000 Queue not empty

NONE 0x00000000 Floating-point trap type None

IEEE 0x00004000 Floating-point trap type IEEE Exception

UFIN 0x00008000 Floating-point trap type Unfinished FPop

UIMP 0x0000c000 Floating-point trap type Unimplemented FPop

SEQE 0x00010000 Floating-point trap type Sequence Error

NS 0x00400000 Non-standard floating-point FAST mode

TEM=NX 0x00800000 Trap enable mask – Inexact Trap Mask

TEM=DZ 0x01000000 Trap enable mask – Divide by Zero Trap Mask

TEM=UF 0x02000000 Trap enable mask – Underflow Trap Mask

TEM=OF 0x04000000 Trap enable mask – Overflow Trap Mask

TEM=NV 0x08000000 Trap enable mask – Invalid Operation Trap Mask

EXT 0x00000000 Extended rounding precision – Extended precision

SGL 0x10000000 Extended rounding precision – Single precision

DBL 0x20000000 Extended rounding precision – Double precision

NEAR 0x00000000 Rounding direction – Round to nearest (tie-even)

ZERO 0x40000000 Rounding direction – Round to 0

PINF 0x80000000 Rounding direction – Round to +Infinity

Table 51. SPARC FPSR Register Bit Settings (Continued)

Value Bit Setting Meaning
TotalView User’s Guide 343

APPENDIX C: Architectures
Using the
SPARC FPSR
Register

The SPARC processor does not catch floating-point errors by default. You can
change the value of the FPSR within TotalView to customize the exception
handling for your program.

For example, if your program inadvertently divides by zero, you can edit the bit
setting of the FPSR register in the stack frame pane. In this case, you would change
the bit setting for the FPSR to include 0x01000000 (as shown in Table 51) so that
TotalView traps the “divide by zero” bit. The string displayed next to the FPSR
register should now include TEM=(DZ). Now, when your program divides by zero,
it receives a SIGFPE signal, which you can catch with TotalView. See Chapter 3,
“Setting Up a Debugging Session,” on page 35 and “Handling Signals” on page 48
for more information. If you did not set the bit for trapping divide by zero, the
processor would ignore the error and set the AEXC=(DZ) bit.

SPARC
Floating-Point
Format

The SPARC processor supports the IEEE floating-point format.

NINF 0xc0000000 Rounding direction – Round to -Infinity

Table 51. SPARC FPSR Register Bit Settings (Continued)

Value Bit Setting Meaning
344 TotalView User’s Guide

Alpha
Alpha

Alpha General
Registers

TotalView displays the Alpha general registers in the stack frame pane of the
process window. Table 52 describes how TotalView treats each general register,
and the actions you can take with each register.

1. The Frame Pointer (FP) is a software register that TotalView maintains; it is not an actual hardware register.
TotalView computes the value of FP as part of the stack backtrace.

Table 52. Alpha General Purpose Integer Registers

Register Description Data Type Edit Dive
Specify in
Expression

V0 Function value register <long> yes yes $v0

T0 – T7 Conventional scratch registers <long> yes yes $t0 – $t7

S0 – S5 Conventional saved registers <long> yes yes $s0 – $s5

S6 Stack frame base register <long> yes yes $s6

A0 – A5 Argument registers <long> yes yes $a0 – $a5

T8 – T11 Conventional scratch registers <long> yes yes $t8 – $t11

RA Return Address register <long> yes yes $ra

T12 Procedure value register <long> yes yes $t12

AT Volatile scratch register <long> yes yes $at

GP Global pointer register <long> yes yes $gp

SP Stack pointer <long> yes yes $sp

ZERO ReadAsZero/Sink register <long> no yes $zero

PC Program counter <code>[] no yes $pc

FP Frame pointer1 <long> no yes $fp
TotalView User’s Guide 345

APPENDIX C: Architectures
Alpha Floating-
Point Registers

TotalView displays the Alpha floating-point registers in the stack frame pane of
the process window. Table 53 describes how TotalView treats each floating-point
register, and the actions you can take with each register.

Alpha FPCR
Register

For your convenience, TotalView interprets the bit settings of the Alpha FPCR
register. You can edit the value of the FPCR and set it to any of the bit settings
outlined in Table 54.

Table 53. Alpha Floating-Point Registers

Register Description Data Type Edit Dive
Specify in
Expression

F0 – F1 Floating-point registers (f registers),
used singly

<double> yes yes $f0 – $f1

F2 – F9 Conventional saved registers <double> yes yes $f2 – $f9

F10 – F15 Conventional scratch registers <double> yes yes $f10 – $f15

F16 – F21 Argument registers <double> yes yes $f16 – $f21

F22 – F30 Conventional scratch registers <double> yes yes $f22 – $f30

F31 ReadAsZero/Sink register <double> yes yes $f31

FPCR Floating-point control register <long> yes no $fpcr

Table 54. Alpha FPCR Register Bit Settings

Value Bit Setting Meaning

SUM 0x8000000000000000 Summary bit

DYN=CHOP 0x0000000000000000 Rounding mode — Chopped rounding mode

DYN=MINF 0x0400000000000000 Rounding mode — Minus infinity

DYN=NORM 0x0800000000000000 Rounding mode — Normal rounding

DYN=PINF 0x0c00000000000000 Rounding mode — Plus infinity

IOV 0x0200000000000000 Integer overflow
346 TotalView User’s Guide

Alpha
Alpha Floating-
Point Format

The Alpha processor supports the IEEE floating point format.

INE 0x0100000000000000 Inexact result

UNF 0x0080000000000000 Underflow

OVF 0x0040000000000000 Overflow

DZE 0x0020000000000000 Division by zero

INV 0x0010000000000000 Invalid operation

Table 54. Alpha FPCR Register Bit Settings (Continued)

Value Bit Setting Meaning
TotalView User’s Guide 347

APPENDIX C: Architectures
MIPS

MIPS General
Registers

TotalView displays the MIPS general purpose registers in the stack frame pane of
the process window. Table 55 describes how TotalView treats each general
register, and the actions you can take with each register.

Table 55. MIPS General (Integer) Registers

Register Description Data Type1 Edit Dive
Specify in
Expression

ZERO Always has the value 0 <long> no no $zero

AT Reserved for the assembler <long> yes yes $at

V0 – V1 Function value registers <long> yes yes $v0 – $v1

A0 – A7 Argument registers <long> yes yes $a0 – $a7

T0 – T3 Temporary registers <long> yes yes $t0 – $t3

S0 – S7 Saved registers <long> yes yes $s0 – $s7

T8 – T9 Temporary registers <long> yes yes $t8 – $t9

K0 – K1 Reserved for the operating system <long> yes yes $k1 – $k2

GP Global pointer <long> yes yes $gp

SP Stack pointer <long> yes yes $sp

S8 Hardware frame pointer <long> yes yes $s8

RA Return address register <code>[] no yes $ra

MDLO Multiply/Divide special register, holds
least-significant bits of multiply,
quotient of divide

<long> yes yes $mdlo
348 TotalView User’s Guide

MIPS
1. On MIPS, programs compiled either –64 or –n32 have 64 bit registers. TotalView uses <long> for –64
compiled programs and <long long> for –n32 compiled programs.

2. The virtual frame pointer is a software register that TotalView maintains. It is not an actual hardware register.
TotalView computes the VFP as part of stack backtrace.

MIPS SR
Register

For your convenience, TotalView interprets the bit settings of the SR register as
outlined in Table 56.

MDHI Multiply/Divide special register, holds
most-significant bits of multiply,
remainder of divide

<long> yes yes $mdhi

CAUSE Cause register <long> yes yes $cause

EPC Program counter <code>[] no yes $epc

SR Status register <long> no no $sr

VFP Virtual frame pointer2 <long> no no $vfp

Table 55. MIPS General (Integer) Registers (Continued)

Register Description Data Type1 Edit Dive
Specify in
Expression

Table 56. MIPS SR Register Bit Settings

Value Bit Setting Meaning

0x00000001 IE Interrupt enable

0x00000002 EXL Exception level

0x00000004 ERL Error level

0x00000008 S Supervisor mode

0x00000010 U User mode

0x00000018 U Undefined (implemented as User mode)

0x00000000 K Kernel mode
TotalView User’s Guide 349

APPENDIX C: Architectures
0x00000020 UX User mode 64-bit addressing

0x00000040 SX Supervisor mode 64-bit addressing

0x00000080 KX Kernel mode 64-bit addressing

0x0000FF00 IM=i Interrupt Mask value is i

0x00010000 DE Disable cache parity/ECC

0x00020000 CE Reserved

0x00040000 CH Cache hit

0x00080000 NMI Non-maskable interrupt has occurred

0x00100000 SR Soft reset or NMI exception

0x00200000 TS TLB shutdown has occurred

0x00400000 BEV Bootstrap vectors

0x02000000 RE Reverse-Endian bit

0x04000000 FR Additional floating-point registers
enabled

0x08000000 RP Reduced power mode

0x10000000 CU0 Coprocessor 0 usable

0x20000000 CU1 Coprocessor 1 usable

0x40000000 CU2 Coprocessor 2 usable

0x80000000 XX MIPS IV instructions usable

Table 56. MIPS SR Register Bit Settings (Continued)

Value Bit Setting Meaning
350 TotalView User’s Guide

MIPS
MIPS Floating-
Point Registers

TotalView displays the MIPS floating-point registers in the stack frame pane of
the process window. Table 57 describes how TotalView treats each floating-point
register, and the actions you can take with each register.

MIPS FCSR
Register

For your convenience, TotalView interprets the bit settings of the MIPS FCSR
register. You can edit the value of the FCSR and set it to any of the bit settings
outlined in Table 58.

Table 57. MIPS Floating-Point Registers

Register Description Data Type Edit Dive
Specify in
Expression

F0, F2 Hold results of floating-point type
function. $f0 has the real part, $f2 has
the imaginary part

<double> yes yes $f0, $f2

F1 – F3,
F4 – F11

Temporary registers <double> yes yes $f1 – $f3,
$f4 – $f11

F12 – F19 Pass single or double precision actual
arguments

<double> yes yes $f12 – $f19

F20 – F23 Temporary registers <double> yes yes $f20 – $f23

F24 – F31 Saved registers <double> yes yes $f24 – $f31

FCSR FPU control and status register <int> yes no $fcsr

Table 58. MIPS FCSR Register Bit Settings

Value Bit Setting Meaning

RM=RN 0x00000000 Round to nearest

RM=RZ 0x00000001 Round toward zero

RM=RP 0x00000002 Round toward plus infinity

RM=RM 0x00000003 Round toward minus infinity

flags=(I) 0x00000004 Flag=inexact result
TotalView User’s Guide 351

APPENDIX C: Architectures
flags=(U) 0x00000008 Flag=underflow

flags=(O) 0x00000010 Flag=overflow

flags=(Z) 0x00000020 Flag=divide by zero

flags=(V) 0x00000040 Flag=invalid operation

enables=(I) 0x00000080 Enables=inexact result

enables=(U) 0x00000100 Enables=underflow

enables=(O) 0x00000200 Enables=overflow

enables=(Z) 0x00000400 Enables=divide by zero

enables=(V) 0x00000800 Enables=invalid operation

cause=(I) 0x00001000 Cause=inexact result

cause=(U) 0x00002000 Cause=underflow

cause=(O) 0x00004000 Cause=overflow

cause=(Z) 0x00008000 Cause=divide by zero

cause=(V) 0x00010000 Cause=invalid operation

cause=(E) 0x00020000 Cause=inexact result

FCC=(0/c) 0x00800000 FCC=Floating-Point Condition Code 0; c=Condition bit

FS 0x01000000 Flush to zero

FCC=(1) 0x02000000 FCC=Floating-Point Condition Code 1

FCC=(2) 0x04000000 FCC=Floating-Point Condition Code 2

FCC=(3) 0x08000000 FCC=Floating-Point Condition Code 3

FCC=(4) 0x10000000 FCC=Floating-Point Condition Code 4

Table 58. MIPS FCSR Register Bit Settings (Continued)

Value Bit Setting Meaning
352 TotalView User’s Guide

MIPS
Using the MIPS
FCSR Register

You can change the value of the MIPS FCSR register within TotalView to
customize the exception handling for your program.

For example, if your program inadvertently divides by zero, you can edit the bit
setting of the FCSR register in the stack frame pane. In this case, you would change
the bit setting for the FCSR to include 0x400 (as shown in Table 58). The string
displayed next to the FCSR register should now include “enables=(Z)”. Now,
when your program divides by zero, it receives a SIGFPE signal, which you can
catch with TotalView. See Chapter 3, “Setting Up a Debugging Session,” on
page 35 and “Handling Signals” on page 48 for more information.

MIPS Floating-
Point Format

The MIPS processor supports the IEEE floating point format.

MIPS Delay Slot
Instructions

On the MIPS architecture, jump and branch instructions have a “delay slot”. This
means that the instruction after the jump or branch instruction is executed before
the jump or branch is executed.

In addition, there is a group of “branch likely” conditional branch instructions in
which the instruction in the delay slot is executed only if the branch is taken.

The MIPS processors execute the jump or branch instruction and the delay slot
instruction as an indivisible unit. If an exception occurs as a result of executing the
delay slot instruction, the branch or jump instruction is not executed, and the
exception appears to have been caused by the jump or branch instruction.

This behavior of the MIPS processors affects both the TotalView instruction step
command and TotalView breakpoints.

FCC=(5) 0x20000000 FCC=Floating-Point Condition Code 5

FCC=(6) 0x40000000 FCC=Floating-Point Condition Code 6

FCC=(7) 0x80000000 FCC=Floating-Point Condition Code 7

Table 58. MIPS FCSR Register Bit Settings (Continued)

Value Bit Setting Meaning
TotalView User’s Guide 353

APPENDIX C: Architectures
The TotalView instruction step command will step both the jump or branch
instruction and the delay slot instruction as if they were a single instruction.

If a breakpoint is placed on a delay slot instruction, execution will stop at the jump
or branch preceding the delay slot instruction, and TotalView will not know that
it is at a breakpoint. At this point, attempting to continue the thread which hit the
breakpoint without first removing the breakpoint will cause the thread to hit the
breakpoint again without executing any instructions. Before continuing the thread,
you must remove the breakpoint. If you need to reestablish the breakpoint, you
might then use the instruction step command to execute just the delay slot
instruction and the branch.

A breakpoint placed on a delay slot instruction of a “branch likely” instruction will
be hit only if the branch is going to be taken.
354 TotalView User’s Guide

Intel-x86
Intel-x86

Intel-x86
General
Registers

TotalView displays the Intel-x86 general registers in the stack frame pane of the
process window. Table 59 describes how TotalView treats each general register,
and the actions you can take with each register.

Table 59. Intel-x86 General Registers

Register Description Data Type Edit Dive
Specify in
Expression

EAX General registers <void> yes yes $eax

ECX <void> yes yes $ecx

EDX <void> yes yes $edx

EBX <void> yes yes $ebx

EBP <void> yes yes $ebp

ESP <void> yes yes $esp

ESI <void> yes yes $esi

EDI <void> yes yes $edi

CS Selector registers <void> no no $cs

SS <void> no no $ss

DS <void> no no $ds

ES <void> no no $es

FS <void> no no $fs

GS <void> no no $gs

EFLAGS <void> no no $eflags
TotalView User’s Guide 355

APPENDIX C: Architectures
Intel-x86
Floating-Point
Registers

TotalView displays the x86 floating-point registers in the stack frame pane of the
process window. Table 60 describes how TotalView treats each floating-point
register, and the actions you can take with each register.

EIP Instruction pointer <code>[] no yes $eip

FAULT <void> no no $fault

TEMP <void> no no $temp

INUM <void> no no $inum

ECODE <void> no no $ecode

Table 59. Intel-x86 General Registers (Continued)

Register Description Data Type Edit Dive
Specify in
Expression

Table 60. Intel-x86 Floating-Point Registers

Register Description Data Type Edit Dive
Specify in
Expression

ST0 ST(0) <extended> yes yes $st0

ST1 ST(1) <extended> yes yes $st1

ST2 ST(2) <extended> yes yes $st2

ST3 ST(3) <extended> yes yes $st3

ST4 ST(4) <extended> yes yes $st4

ST5 ST(5) <extended> yes yes $st5

ST6 ST(6) <extended> yes yes $st6

ST7 ST(7) <extended> yes yes $st7

FPCR Floating-point control register <void> yes no $fpcr
356 TotalView User’s Guide

Intel-x86
Intel-x86 FPCR
Register

For your convenience, TotalView interprets the bit settings of the FPCR and FPSR
registers.

You can edit the value of the FPCR and set it to any of the bit settings outlined in
Table 61.

FPSR Floating-point status register <void> no no $fpsr

FPTAG Tag word <void> no no $fptag

FPIOFF Instruction offset <void> no no $fpioff

FPISEL Instruction selector <void> no no $fpisel

FPDOFF Data offset <void> no no $fpdoff

FPDSEL Data selector <void> no no $fpdsel

Table 60. Intel-x86 Floating-Point Registers (Continued)

Register Description Data Type Edit Dive
Specify in
Expression

Table 61. Intel-x86 FPCR Register Bit Settings

Value Bit Setting Meaning

RC=NEAR 0x0000 To nearest rounding mode

RC=NINF 0x0400 Toward negative infinity rounding mode

RC=PINF 0x0800 Toward positive infinity rounding mode

RC=ZERO 0x0c00 Toward zero rounding mode

PC=SGL 0x0000 Single precision rounding

PC=DBL 0x0080 Double precision rounding

PC=EXT 0x00c0 Extended precision rounding

EM=PM 0x0020 Precision exception enable
TotalView User’s Guide 357

APPENDIX C: Architectures
Using the Intel-
x86 FPCR
Register

You can change the value of the FPCR within TotalView to customize the
exception handling for your program.

For example, if your program inadvertently divides by zero, you can edit the bit
setting of the FPCR register in the stack frame pane. In this case, you would change
the bit setting for the FPCR to include 0x0004 (as shown in Table 61) so that
TotalView traps the “divide by zero” bit. The string displayed next to the FPCR
register should now include EM=(ZM). Now, when your program divides by zero,
it receives a SIGFPE signal, which you can catch with TotalView. See Chapter 3
of the TotalView User’s Guide for information on handling signals. If you did not
set the bit for trapping divide by zero, the processor would ignore the error and set
the EF=(ZE) bit in the FPSR.

Intel-x86 FPSR
Register

The bit settings of the Intel-x86 FPSR register are outlined in Table 62.

EM=UM 0x0010 Underflow exception enable

EM=OM 0x0008 Overflow exception enable

EM=ZM 0x0004 Zero divide exception enable

EM=DM 0x0002 Denormalized operand exception enable

EM=IM 0x0001 Invalid operation exception enable

Table 61. Intel-x86 FPCR Register Bit Settings (Continued)

Value Bit Setting Meaning

Table 62. Intel-x86 FPSR Register Bit Settings

Value Bit Setting Meaning

TOP=<i> 0x3800 Register <i> is top of FPU stack

B 0x8000 FPU busy

C0 0x0100 Condition bit 0
358 TotalView User’s Guide

Intel-x86
Intel-x86
Floating-Point
Format

The Intel-x86 processor supports the IEEE floating point format.

C1 0x0200 Condition bit 1

C2 0x0400 Condition bit 2

C3 0x4000 Condition bit 3

ES 0x0080 Exception summary status

SF 0x0040 Stack fault

EF=PE 0x0020 Precision exception

EF=UE 0x0010 Underflow exception

EF=OE 0x0008 Overflow exception

EF=ZE 0x0004 Zero divide exception

EF=DE 0x0002 Denormalized operand exception

EF=IE 0x0001 Invalid operation exception

Table 62. Intel-x86 FPSR Register Bit Settings (Continued)

Value Bit Setting Meaning
TotalView User’s Guide 359

APPENDIX C: Architectures
360 TotalView User’s Guide

Glossary
action point A point in a program where a breakpoint, evaluation point, or event point has been
set during a TotalView session.

address space A region of memory that contains code and data from a program. One or more
threads can run in an address space. A process normally contains an address space.

automatic process
acquisition

TotalView automatically detects the many processes that parallel and distributed
programs run in and attaches to them automatically so you don’t have to attach to
them manually. This process is called automatic process acquisition. If the process
is on a remote machine, automatic process acquisition also automatically starts the
TotalView debugger server.

breakpoint A point in a program where execution can be conditionally suspended to permit
examination and manipulation of data.

child process A process created by another process (see parent process) when that other process
calls fork().

cluster debugging The action of debugging a program that is running on a cluster of hosts in a network.
Typically, the hosts are homogeneous.

core file A file containing the contents of memory and a list of thread registers. The operating
system dumps (creates) a core file whenever a program exits because of a severe
error (such as an attempt to store into an invalid address).

cross debugging A special case of remote debugging where the host platform and the target platform
are different types of machines.

data-set A set of array elements generated by TotalView and sent to the Visualizer.
TotalView User’s Guide 361

dbelog library A library of routines for creating event points and generating event logs from within
TotalView. To use event points, you must link your program with both the dbelog
and elog libraries.

dbfork library A library of special versions of the fork() and execve() calls used by the TotalView
debugger to debug multiprocess programs. Programs that call one of the fork(),
vfork(), or execve() routines must be linked with the dbfork library.

debugger server See the glossary entry for tvdsvr process.

distributed debugging The action of debugging a program that is running on more than one host in a
network. The hosts can be homogeneous or heterogeneous. For example, programs
written with message passing libraries such as Parallel Virtual Machine (PVM) or
Parallel Macros (PARMACS) run on more than one host.

dive stack A series of nested dives that were performed in the same variable window. The
number of right angle brackets (>) in the upper left hand corner of a variable
window indicates the number of nested dives on the dive stack. Each time that you
undive, TotalView pops a dive from the dive stack and decrements the number of
right angle brackets shown in the variable window.

diving The action of displaying more information about an item. For example, if you dive
into a variable in TotalView, a window appears with more information about the
variable.

editing cursor A black rectangle that appears when a TotalView field is selected for editing. You
use field editor commands to move the editing cursor.

elog library A library of routines for generating event logs from multiprocess programs. The
event logs can be displayed and analyzed with the Gist application.To use event
points, you must link your program with both the dbelog and elog libraries.

evaluation point A point in the program where TotalView evaluates a code fragment without
stopping the execution of the program.

event log A file containing a record of events for each process in a program.

event point A point in the program where TotalView writes an event to the event log for later
analysis using Gist.
362 TotalView User’s Guide

Glossary
extent The number of elements in the dimension of an array. For example, a Fortran array
of integer(7,8) has an extent of 7 in one dimension (7 rows) and an extent of 8 in
the other dimension (8 columns).

field editor A basic text editor that is part of TotalView’s interface. The field editor supports
a subset of GNU Emacs commands.

gridget A dotted grid in the tag field that indicates you can set an action point on the
instruction.

host machine The machine on which the TotalView debugger is running.

lower bound The first element in the dimension of an array or the slice of an array. By default,
the lower bound of an array is 0 in C and 1 in Fortran, but the lower bound can be
any number, including negative numbers.

message queue A list of messages sent and received by message passing programs.

MPICH MPI/Chameleon (Message Passing Interface/Chameleon, most commonly referred
to as MPICH) is a freely-available and portable MPI implementation. MPICH was
written as a collaboration between Argonne National Lab and Mississippi State
University. For more information, see http://www.mcs.anl.gov/mpi.

mutex Mutual exclusion. A collection of techniques for sharing resources so that different
uses do not conflict and cause unwanted interactions.

native debugging The action of debugging a program that is running on the same machine as
TotalView.

nested dive window A TotalView window that results from diving into an item in a variable window.
A nested dive window replaces the contents of the variable window and has an
undive symbol in its title bar. Diving on the undive symbol returns the original
contents of the variable window.

parcel The number of bytes required to hold the shortest instruction for the target
architecture.

parent process A process that calls fork() to spawn other processes (usually called child processes).

PARMACS library A message passing library for creating distributed programs that was developed
by the German National Research Centre for Computer Science.
TotalView User’s Guide 363

process Consists of an address space and a list of one or more threads running in that address
space.

process group A group of processes associated with a multiprocess program. Includes program
groups and share groups.

process window The main TotalView window for a process, which consists of three panes: the stack
trace, the stack frame, and the source code for the program.

program group A group of processes that includes the parent process and all related processes. A
program group includes children that were forked (processes that share the same
source code as the parent) and children that were forked with a subsequent call to
execve() (processes that do not share the same source code as the parent). Contrast
with share group.

PVM library Parallel Virtual Machine library. A message passing library for creating distributed
programs that was developed by the Oak Ridge National Laboratory and the
University of Tennessee.

remote debugging The action of debugging a program that is running on a different machine than
TotalView. The machine on which the program is running can be located many
miles away from the machine on which TotalView is running.

root window A TotalView window displaying the process ID, status (e.g., at breakpoint or
stopped), name, and current routine executing for each process being debugged.

serial line debugging A form of remote debugging where TotalView and the TotalView Debugger Server
communicate over a serial line.

share group A group of processes that includes the parent process and any related processes
that share the same source code as the parent. Contrast with program group.

signals Messages informing processes of asynchronous events, such as serious errors. The
action the process takes in response to the signal depends on the type of signal and
whether or not the program includes a signal handler routine, a routine that traps
certain signals and determines appropriate actions to be taken by the program.

single step The action of executing a single statement and stopping (as if at a breakpoint).

slice A subsection of an array, which is expressed in terms of a lower bound, upper
bound, and stride. Displaying a slice of an array can be useful when working with
very large arrays, which is often the case in Fortran programs.
364 TotalView User’s Guide

Glossary
stack A portion of computer memory and/or registers used to hold information
temporarily. The stack consists of a linked list of stack frames that holds return
locations for called routines, routine arguments, local variables, and saved
registers.

stack frame A section of the stack that contains the local variables, arguments, contents of the
registers used by an individual routine, a frame pointer pointing to the previous
stack frame, and the value of the Program Counter (PC) at the time the routine was
called.

stack trace A sequential list of each currently active routine called by a program and the frame
pointer pointing to its stack frame.

stride The interval between array elements in a slice and the order in which the elements
are displayed. If the stride is 1, every element between the lower bound and upper
bound of the slice is displayed. If the stride is 2, every other element is displayed.
If the stride is –1, every element between the upper bound and lower bound (reverse
order) is displayed.

symbol table A table of symbolic names (such as variables or functions) used in a program and
their memory locations. The symbol table is part of the executable object generated
by the compiler (with the –g switch) and is used by debuggers to analyze the
program.

tag field The left margin in the source code pane of the TotalView process window
containing boxed line numbers marking the lines of source code that actually
generate executable code.

target machine The machine on which the process to be debugged is running.

thread An execution context that normally contains a set of private registers and a region
of memory reserved for an execution stack. A thread runs in an address space.

tvdsvr process The TotalView Debugger Server process, which facilitates remote debugging by
running on the same machine as the executable and communicating with TotalView
over a TCP/IP port or serial line.

undiving The action of displaying the previous contents of a window, instead of the contents
displayed for the current dive. To undive, you dive on the undive icon in the upper
right-hand corner of the window.

upper bound The last element in the dimension of an array or the slice of an array.
TotalView User’s Guide 365

variable window A TotalView window displaying the name, address, data type, and value of a
particular variable.

visualizer process A process that works with TotalView in a separate window allowing you to see a
graphical representation of program array data.
366 TotalView User’s Guide

Index
Symbols

$visualize 103, 109

, (comma), in specifying a range of addresses 150

. (period)
in suffix of process names 129
repeat last text search 31

.pghpfrc file 105

.rhosts 83

.stb file 106

.stb files 106, 271

.stx file 106, 109

.stx files 271

/ (slash) search for strings 31

/proc file system 323

: (colon), in array type strings 156

> (right angle bracket), indicating nested dives 153

? (question) in shortcut key for Help command 19

\ (backslash) search backward for strings 31

^ (ascicircum) as symbol for Control (Ctrl) key 39

^(caret), to indicate Ctrl key 111

^Z 111

A

–a option 37, 288

accelerator keys
See also shortcut keys

action points
action points window 266
definition 7, 361
deleting 213
disabling 213
enabling 213
loading automatically 294
machine level 120
saving 215, 296
slow performance 261
suppressing 214
types of 7
unsuppressing 214
window 211

addresses
address space, definition 361
changing 162
of machine instructions 120, 163
retracing 265
specifying in variable window 150
tracking in variable window 148

AIX
linking C++ to dbfork library 317
linking to dbfork library 317
shared libraries 329
swap space 326

AIX operating system
list of supported compilers 304

allocated arrays, displaying 161
TotalView User’s Guide 367

Index
Alpha
architecture 345
floating-point format 347
floating-point registers 346
FPCR register 346
general registers 345

Alpha Digital UNIX
condition variable window 184
mutex 181

angle brackets, in windows 153

animation
using $visualize 240

architectures 333
Alpha 345
Intel-x86 355
MIPS 348
Power 334
PowerPC 334
SPARC 340

areas of memory, data type 160

arguments
for totalview command 287
for tvdsvr command 300
in server launch command 66, 68
passing to program 37
setting 54

argv array, displaying 161

arrays
character 160
declared versus allocated 161
displaying 171
displaying argv 161
displaying contents 28
displaying slices 172
lower bound 156
type strings for 156
upper bound 156
visualizing 236

–arrow_bg_color option 288

–arrow_color option 288

Assembler
constructs 224

display symbolically 268
examining 120

assembler
and –g compiler switch 28

Assembler Display Mode command 120

asynchronous thread control 135

at breakpoint state 48

attaching
remote processes, by diving 62
remote processes, by node 61
to MPICH application 79
to processes 40
to PVM task 100

Auto Visualize
in Directory Window 243

auto-launch feature
(figure) 65
changing options 65, 277
description 64
disabling 69

automatic process acquisition
definition 361

B

B state 48

–background option 288

–barr_stop_all option 289

barrier breakpoint See process barrier breakpoint 201

barrier breakpoints 7

–barrier_color option 288

–barrier_font_color option 289

–bg option 288

bit fields 153

bookmarks 211

–break_color option 289

Breakpoint at Location command 193

breakpoints 7
368 TotalView User’s Guide

Index
and MPI_Init() 84
clearing 17
conditional 205, 207, 219
copy, master to slave 78
countdown 207, 219
definition 361
in action points window 211
listing 23
loading automatically 265
machine level 120
saving 215, 265
set, while running parallel tasks 84
setting 17, 190, 197
sharing 199
slow performance 261
supported in TotalView 133
thread specific 218

built-in
intrinsic variables

$clid 218
$duid 218
$nid 218
$pid 218
$processduid 218
$systid 218
$tid 218

statements
$count 219
$countall 220
$countprocess 219
$countthread 219
$stop 219
$stopall 219
$stopprocess 219
$stopthread 219
$visualize 220, 239

type strings 158

–button_bg_color option 289

–button_fg_color option 289

buttons
EVAL 216
undive 152

C

C language
array bounds 156
file suffixes 119
in evaluation points 221
type strings

parameter in .Xdefaults file 267
supported 154

C shell 324

C++ demangler 290

C++ programs
including libdbfork.h 317

–callback option 66, 300

case sensitive searches 277

casting examples, types 161

casting, types of variable 154

changing
auto-launch options 65
program groups 131
variables 153

characters, arrays of 160

–chase option 289

child processes
definition 361
names 129

Clear All STOP and EVAL command 213

clearing 133
breakpoints 197

$clid intrinsic variable 218

Close
in Data Window 245

Close All Similar Windows command 152

Close Window (q) command 19

Close Window command 152

closing variable windows 152

cluster debugging 61, 64
definition 361
TotalView User’s Guide 369

Index
code constructs supported
Assembler 224
C 221
Fortran 222

<code> data type 160

<code> type string 163

–color option 289

command line option
launch Visualizer 254
totalview 288
tvdsvr 300

commands 37
. (Reexecute Last Search) 31
/ (Search for String) 31
\ (Search Backward for String) 31
arguments 54
Assembler Display Mode 120
Breakpoint at Location 193
change Visualizer launch 235
Clear All STOP and EVAL 213
Close All Similar Windows 152
Close Window 152
configure, MPICH 77
Control-? (help) 19
Control-C (cancel) 19
Control-L (refresh) 19
Control-Q (quit) 19, 33
Control-R (raise root window) 19
Create Process (without starting it) 125
Current Stackframe 122
Delete Program 144
Detach from Process 43
Display Assembler by Address 120
Display Assembler Symbolically 120
display menu 17
dive 17
Duplicate Window 153
Edit Source Text 122
Editor Launch String 123
Find Interesting Relative 132
for Data Window

Directory, New Base Window, Options, Delete
245

for Directory Window

View, Graph, Surface, File, Delete 243
for Graph Data Window

Lines, Points, Transpose 248
for Surface Data Window

Mesh, Shade, Contour, Zone, Auto Reduce, Re-
set Viewp 253

Fortran Modules Window 167
Function or File 116, 122
Global Variables Window 149
Go Group 124
Go Process 124
Go Thread 125
group or process 111
Halt Group 127
Halt Process 127
Halt Thread 127
Hold Group 128
Hold/Release Process (w) 128
input and output files 56
Input from File 56
Interleave Display Mode 120, 143

Interleave Display Mode command 143
menu

Close Window (q) 19
Help 19
Quit Debugger (q) 33
Reexecute Last Save Window 33
Save Window to File 33

Message State Window (m) 87
New Base Window 153
New Program Window 38, 42, 44, 63
Next (instruction) 138
Next (instruction) Group 138
Next (instruction) Thread 138
Next (source line) 138
Next (source line) Group 138
Next (source line) Thread 138
Open Action Points Window 211
Open Expression Window 216
Output to File 56
poe 78, 82
pvm 96, 98
Release Group 128
Reload Executable File 39
Restart Program 145
Return (out of function) 139
370 TotalView User’s Guide

Index
Return (out of function) Group 139
Return (out of function) Thread 139
rsh 67, 83
Run (to selection) 138
Run (to selection) Group 138
Run (to selection) Thread 138
Save All Action Points 215
Server Launch Window 70
server launch, arguments 66
Set Command Arguments 54
Set Continuation Signal 43, 142
Set Environment Variables 55
Set PC to Absolute Value 144
Set PC to Selection 143
Set Process Program Group 132
Set Search Directory 52
Set Signal Handling Mode 50
Shift-Return (exit field editor) 19
Show All Process Groups 130
Show All PVM Tasks 100
Show All Unattached Processes 40
Show Event Log Window 57
single stepping 137
Source Display Mode 120
Step (instruction) 137
Step (instruction) Group 137
Step (instruction) Thread 137
Step (source line) 125, 137
Step (source line) Group 137
Step (source line) Thread 137
Suppress All Action Points 214
Toggle Laminated Display 177
Toggle Thread Laminated Display 177
totalview 16, 37

command-line options 264
core files 37, 43
syntax and use 287

tvdsvr 64, 277
launching 66
syntax and use 299

Unsuppress All Action Points 214
Update Process Info 127
Update PVM Task List 100
Variable 148, 149, 150, 176
visualize 235, 254
Visualize (v) 237

Visualize Distribution 109
Visualize ownership information 109
xrdb 263

common blocks, displaying 166

compiled expressions 209

compiler options
-g switch 16, 28, 310

-compiler_vars option 289

compiling
debugging symbols 310
HPF code 106, 310, 313, 315
on AIX 310
on Digital UNIX 312

with exception data 316
on IRIX 313
on SunOS 4 314
on SunOS 5 315
programs 16

switch, library 36

conditional breakpoints 7, 205, 207, 219

configure command 77

continuing
with a signal 142

control registers, interpreting 124

Control-? (help) command 19

Control-C 111

Control-C (cancel) command 19

Control-L (refresh) command 19

Control-Q (quit) command 19, 33

Control-R (raise root window) command 19

copy and paste text 29

core files
definition 361
examining 43
in totalview command 37, 43

$count 209

$count statement 219

$countall statement 220
TotalView User’s Guide 371

Index
countdown breakpoints 207, 219

$countprocess statement 219

$countthread statement 219

CPU registers 124

Create Process (without starting it) command 125

creating processes
and starting them 124
errors 260
new 39
using Step (source line) 125
without starting them 125

cross debugging
definition 361

CTRL-Z 111

customizing TotalView 263

D

data
surface data, manipulation 253
viewing, from Visualizer 246

data size limit in C shell 324

data types
to visualize 236

Data Window 244
Visualizer, display commands 245

data-set
definition 361
header fields 256

dbelog library 362

dbfork library
definition 362
linking with 36, 317
syntax 290

–dbfork option 290

deadlocks
message passing 87

–debug_file option 290, 300

debugger

third party and TotalView Visualizer 233

debugger server 64, 277, 299

debugging
HPF code 107, 293
multiprocess programs 36
programs that call execve 36
programs that call fork 36
PVM applications 95
remote processes 60
symbols

AIX 310
Digital UNIX 312
IRIX 313
SunOS 4 314
SunOS 5 315

declared arrays, displaying 161

delay sloy instructions
MIPS 353

Delete
in Data Window 245
in Directory Window 243

Delete Program command 144

deleting
action points 213
processes 205

–demangler option 290

Detach from Process command 43

dialog box
spelling corrector 32

dialogs
action point options 212
attach to process 42
behavior of 267, 293
change process group 132
debug remote process 60
environment variables 56
input from file 57
launch debugger server 69
load new program 38
location of 289
output to file 57
serial line debugging 74
372 TotalView User’s Guide

Index
set command arguments 54
set search directory 53
set signal handling mode 50

Digital UNIX
/proc file system 323
linking to dbfork library 318
list of supported compilers 305
shared libraries 329
swap space 325

dimmed information, in the root window 140

directories, setting order of search 52

Directory
in Data Window 245

Directory Window
menu commands 242

disabling
action points 213
auto-launch feature 69, 277
PVM support 96, 98, 268, 276, 296

disassembly, in variable window 163

Display Assembler by Address command 120

Display Assembler Symbolically command 120

–display option 291

displaying
areas of memory 150
argv array 161
array 28
arrays 171, 172
common blocks 166
data 17
global variables 149
HPF distributed array node 293
pointer 28
source 17
stack trace pane 28
variable 28

displaying data 8

displaying source 28

Dist 108

distributed debugging

definition 362
remote processes 60
remote server 64
See also PVM applications

dive
button 17
nested 28

dive stack, definition 362

diving 8
definition 153, 362
dive button 17
in source code 116
into a pointer 28
into a process or thread 28
into a stack frame 28
into a variable 28
into Fortran common blocks 166
into global variables 149
into processes 130
into PVM tasks 101
into registers 148

-dpvm option 291

–dpvm option 300

$duid intrinsic variable 218

–dump_core option 291

Duplicate Window command 153

–dynamic option 291

E

E state 47

Edit Source Text command 122

editing
cursor

definition 362
source text 122
type strings 154

editor launch string 122

Editor Launch String command 123

elog library 362
TotalView User’s Guide 373

Index
enabling
action points 213
PVM support 96, 98, 268, 276, 296

environment variables 55
before starting poe 82
LD_LIBRARY_PATH 318, 319
PGI 104

error state 47

–error_color option 292

errors 259

EVAL
evaluation points 8
HPF restriction 103
sign 17

Eval button 216

–eval_color option 292

evaluating expressions 215

evaluation points 8
Assembler constructs 224
C constructs 221
clearing 17
commands 219
defining 205
definition 362
examples 207
Fortran constructs 222
listing 23
machine level 120, 205
setting 17, 206
slow performance 261

event log
definition 362
window 57, 269

event points
definition 362
listing 23

examining
core files 43
process groups 130
source and Assembler code 120
stack trace and stack frame 148

status and control registers 124

exception enable modes 124

executing
out of function 139
to a selected line 138
to the completion of a function 139

execve() 317
attaching to processes 40
debugging programs that call 36
failure of 260
setting breakpoints with 199

Exit
in Directory Window 243

exiting TotalView 33

expression evaluation window
compiled and interpreted expressions 209
discussion 215
location 269

expression system
Alpha 331
Power 330

–ext option 292

extent
definition 363

F

f77
generated 109

fatal errors 324

–fg option 292

field editor
copy and pasting text 29
definition 363
editing cursor(figure) 29
ending session 19

fields
for data-set headers 256

file
include/visualize.h 256
374 TotalView User’s Guide

Index
files
libdbfork.h 317

Find Interesting Relative command 132

finding functions 116

flags
–g 106, 261
–no_hpf 109

floating-point format
Alpha 347
Intel-x86 359
MIPS 353
Power 339
PowerPC 339
SPARC 344

–fn option 292

–font option 292

fonts, in .Xdefaults file 269

–foreground option 292

fork() 317
debugging programs that call 36
setting breakpoints with 199

Fortran
array bounds 156
common blocks 166
debugging modules 168
deferred shape array types 169
file suffixes 119
in evaluation points 222
module data, displaying 167
pointer types 170
type strings, supported by TotalView 154
user defined types 169

Fortran Modules Window command 167

Fortran77
debugging generated 109

functions, finding 116

G

–g compiler option 36

–g flag 106, 261

generated Fortran77 109

generating a symbol table 36

global variables
diving into 149
window

discussion 150
window location syntax 270

Global Variables Window command 149

-global_types option 292

Go Group command 124

Go Process (g) command 86

Go Process command 124

Go Thread command 125

goto statements 205

–grab option 37, 293

–grab_server option 293

Graph
in Directory Window 243

Graph Data Window 247
commands 248
manipulations

Scale, Translate, Zoom, Reset View, Query 248

graphs
manipulating, in Visualizer 248

gridget 120

group
holding processes 128
releasing processes 128

groups, definition 125

H

Halt Group command 127

Halt Process command 127

Halt Thread command 127

handling signals 48, 97, 98, 278, 297

header fields
data-sets 256
TotalView User’s Guide 375

Index
Help command 19

help window 14
displaying 19
location 271

hexadecimal address, specifying in variable window 150

Hold Group command 128

hold process 128

Hold/Release Process (w) command 128

host machine, definition 363

hostname
for tvdsvr 37, 60, 61, 300
in root and process windows 45

HPF
advantages 108
compiling for debugging 106, 310, 313, 315
debugging 107
display node of array element 271
Dist 108
enable debugging at source level 271
EVAL restriction 103
installing TotalView for 104
Repl 108

HPF applications 103

–hpf option 271, 293

HPF_MPICH 105

–hpf_node 108

-hpf_node option 293

–hpf_node option 293

I

I state 47

–icc option 293

idle state 47

–ignore_control_c option 293

in expression 209

In Kernel 48

include/visualize.h 256

input files, setting 56

installing TotalView for 104

instructions, displaying 151, 163

Intel-x86
architecture 355
floating-point format 359
floating-point registers 356
FPCR register 357

using the 358
FPSR register 358
general registers 355

Interleave Display Mode command 120

interpreted expressions 209

intrinsic variables 218
$clid 218
$duid 218
$nid 218
$pid 218
$processduid 218
$systid 218
$tid 218

IRIX
/proc file system 323
linking to dbfork library 319
list of supported compilers 306
shared libraries 329
swap space 328

–iv option 294

K

K state, unviewable 48

-kcc_classes option 294

keyboard accelerators
See also shortcut keys

Keys
Arrow keys 26
scroll 26

keys
Control-C (cancel) 19
Control-L (refresh) 19
376 TotalView User’s Guide

Index
Control-Q (quit) 19
Control-R (raise root window) 19
remapping 330
Shift-Dive 22, 24
Shift-Return (exit field editor) 19

keysym 330

L

labels, for machine instructions 163

laminated variables 177

launch
syntax tvdsvr 277
TotalView Visualizer

configuring 234
from command line 254

tvdsvr 64, 277, 299

–lb option 294

libdbfork.a 317

libdbfork.h file 317

libraries
dbelog 362
dbfork 36, 290, 362
dynamic 102
elog 362
libtvhpf.so 104
loading dynamic 104
shared 291, 329

libtvhpf.so library 104

license manager 259

linking
C++ and dbfork library 317
to dbfork library 317

linking to dbfork library
AIX 317
Digital UNIX 318
IRIX 319
SunOS 4 318
SunOS 5 319

loading
action points 265, 294

new executables 38, 60

local variables, diving into 148

lower bound, of array slices 172

M

M state 47

machine instructions
data type 160
displaying 151, 163

master process
recreating slave processes 111

–mc option 294

memory
displaying areas of 150
out of, error 260

menu 17
mouse button 17

menu commands
See also commands, menu
shortcut keys 18

–menu_arrow_color option 294

menus
(figure) 18
blank menus 294
caching 294
customizing behavior of 276

message
definition of message queue 363
envelope information 92
reserved tags 102
troubleshooting 259

message passing deadlocks 87

Message Passing Interface/Chamelon Standard. See
MPICH

Message State Window command 87

–message_queue option 294

MIPS
architecture 348
delay slot instructions 353
TotalView User’s Guide 377

Index
FCSR register 351
using the 353

floating-point format 353
floating-point registers 351
general registers 348
SR register 349

mixed state 47

–Mkeepftn flag 106, 109

modules
debugging, Fortran 168
displaying data, Fortran 167

mounting /proc file system 323

–mouse_bg_color option 295

–mouse_fg_color option 295

MPI
library, internal state 87

MPI_Init() 78

MPICH 76–82
attach from TotalView 79
copy of 77
definition 363
HPF 105
MPICH/ch_p4 112

MPICH –p4pg files 80

mpirun
command 107
flags to TotalView through 112

MPL_Init()
and breakpoints 84

–mqd option 294

mtile 101

–Mtotalview flag 106, 261

–Mtv flag 106

-mult_color option 295

multiprocess programs
and signals 51
attaching to 42
compiling 36
finding active processes 132

loading new executables 61
process groups 129
setting and clearing breakpoints 197

multithreaded programs 13

mutex 185
definition 363
window 181

N

–n option, of rsh command 68

names, of processes in process groups 129

native debugging
definition 363

native programs 2

navigating
source code 122

navigation controls 17

–nc option 289

nested dive 28

nested dive window 153
definition 363

network debugging 10

New Base Window
command 153
in Data Window 245

New Program Window command 38, 42, 44, 63

Next (instruction) command 138

Next (instruction) Group command 138

Next (instruction) Thread command 138

Next (source line) command 138

Next (source line) Group command 138

Next (source line) Thread command 138

–nicc option 293

$nid intrinsic variable 218

–nlb option 294

–nmc option 294
378 TotalView User’s Guide

Index
–no_barr_stop_all option 289

–no_chase option 289

–no_color option 289

-no_compiler_vars option 290

–no_dbfork option 290

-no_dpvm option 291

–no_dump_core option 291

–no_dynamic option 291

-no_global_types option 293

–no_grab option 293

–no_grab_server option 293

–no_hpf flag 109

-no_hpf option 293

–no_hpf option 271

–no_ignore_control_c option 293

–no_iv option 294

-no_kcc_classes option 294

–no_message_queue option 294

–no_mqd option 294

-no_parallel option 295

–no_pop_at_breakpoint option 295

–no_pop_on_error option 295

–no_pvm option 96, 98, 296

–no_stop_all option 297

–no_tc option 297

–no_text_color option 297

–no_title_color option 297

-no_user_threads option 298

notes
bit fields 153
breakpoints apply to processes 190
changing global variables 125
copying text between windows 30
editing compound objects or arrays 157
editing type strings 154

how TotalView determines share group 131
interleave display mode 120
prefix for hexadecimal addresses 150
specifying search directories 53
variable window, tracking addresses 148
visualizer not on all platforms 231

–npr option 295

–nsb option 296

O

–O option 36

offsets, for machine instructions 163

opaque type definitions 162

Open Action Points Window command 211

Open Expression Window command 216

operating systems 322

optimizations, compiling for 36

options
command line

hpf

–hpf 271

–hpf_node 108, 271

–no_hpf 271

–no_hpf_node 271
totalview 288
tvdsvr 300

for visualize 254
in Data Window 245
surface data display 251
tvdsvr

–callback 299
–serial 299
–server 299
–set_pw 299

override-redirect windows 275

P

-p4pg files 80

panes
TotalView User’s Guide 379

Index
location and size 273

Parallel Environment for AIX, See PE

-parallel option 295

Parallel Virtual Machine. See PVM

parent processes, definition 363

passing arguments 37

password, generated by tvdsvr 299

patching programs 207

PATH environment variable 52

PC
arrow 23
program counter 23

PE 82
and slow processes 113
from command line 83
from poe 83

performance
action points 261
interpreted, compiled expressions 209
of remote debugging 64

PGI HPF applications 103

$pid intrinsic variable 218

placing windows 276

poe command
and mpirun 78
and TotalView 83
arguments 82
on IBM SP 79
running PE 83
TotalView acquires poe processes 85

pointer 28

pointers
to arrays 155

–pop_at_breakpoint option 295

–pop_on_error option 295

pop-up menu 17

port number, for tvdsvr 37, 60, 61, 300

–port option 70, 300

Power
architecture 334
floating-point format 339
floating-point registers 336
FPSCR register 337

using the 339
general registers 334
MSR register 335

PowerPC
architecture 334
floating-point format 339
floating-point registers 336
FPSCR register 337

using the 339
general registers 334
MSR register 335

–pr option 295

preprocessors 292

primary thread, definition 134

procedures
attaching to processes 40, 61, 100
changing

auto-launch options 69
program groups 131
variables 153

compiling multiprocess programs 36
creating processes 124
debugging Fortran modules 168
debugging PVM applications 96
debugging setuid programs 261
deleting processes 144
disabling the auto-launch feature 69
displaying

argv 161
declared and allocated arrays 161
global variables 149
machine instructions 151, 163
memory 150

displaying Fortran module data 167
editing

addresses 162
source text 122
type strings 154

evaluating expressions 216
380 TotalView User’s Guide

Index
examining
core file 43
source and Assembler code 120
stack trace and stack frame 148

executing
out of function 139
to a selected line 138

finding
interesting relatives 132
source code for functions 116

loading new executables 38, 60
patching programs 207
reloading executables 39
rereading symbol tables 39
restarting programs 145
saving action points 215
selecting source lines 136
setting

breakpoints 197
breakpoints while running 190
command arguments 54
environment variables 55
evaluation points 206
input and output files 56
program counter (PC) 143, 144
search paths 52
signal handling mode 50
thread specific breakpoints 218

setting editor launch string 122
single stepping 137

into function calls 137
over function calls 138

starting processes 124
starting threads 124
starting tvdsvr 64, 70
stopping processes 127
stopping threads 127
synchronizing process 138
type casting 154

process
definition 14, 364
displaying data 28
slave, breakpoints in 78
starting 21

process acquisition, automatic 361

process barrier breakpoint 201
changes

when clearing 204
when setting 204

changing to ordinary breakpoint 204
deleting 204
setting 201
states 201

process groups window 5, 130

process window 5, 20–25
(figure) 21
definition 364
location 273
program counter 23

$processduid intrinsic variable 218

processes
acquiring in PVM applications 96
attaching to 40, 61, 100
child, definition 361
creating 124
creating new 39
deleting 144
detaching from 43
dimmed, in the root window 140
error creating 260
groups

changing 131
definition 364
examining 130
understanding 129

holding 128
in parallel job 78
loading new executables 38, 60
location of 45
master

restart 111
names 129
parent, definition 363
refreshing process info 127
releasing 128
reloading 39
remote 41
restarting 145
single stepping 133
TotalView User’s Guide 381

Index
starting 124
status of 44
stopping 127
stopping and deleting 205

processor number 45

program counter (PC)
arrow 23
setting program counter 143

program group
changing 131
definition 364
discussion 129

programs
compiling 36
deleting 144
native 2
restarting 145
setuid, debugging 261

pthread_mutexattr_settype_np() 182

PVM applications
acquiring processes 96
debugging 95
dynamic libraries 102
enabling support 268, 276
message tags 102
search path 97
tasks 95, 96

pvm command 96, 98

–pvm option 96, 98, 296, 300, 301

pvm_joingroup() 102

pvm_spawn() 96

Q

queueing mouse clicks 266

quitting TotalView 19, 33

R

–r option 296

R state 47

Reexecute Last Save Window command 33

Refresh Window (Control-L) command 19

registers
Alpha FPCR 346
diving into 148
floating-point

Alpha 346
Intel-x86 356
MIPS 351
Power 336
PowerPC 336
SPARC 341

general
Alpha 345
Intel-x86 355
MIPS 348
Power 334
PowerPC 334
SPARC 340

Intel-x86 FPCR 357
using the 358

Intel-x86 FPSR 358
interpreting 124
MIPS FCSR 351

using the 353
MIPS SR 349
Power FPSCR 337

using the 339
Power MSR 335
PowerPC FPSCR 337

using the 339
PowerPC MSR 335
SPARC FPSR 342

using the 344
SPARC PSR 341

relatives, definition 125

Release Group command 128

release process 128

Reload Executable File command 39

remapping keys 330

remote connection 63

remote debugging 64
382 TotalView User’s Guide

Index
(figure) 2, 65, 71
See also PVM applications
attaching to a process 61
connecting remote machine 63
connecting to a process 64
definition 10, 364
launching tvdsvr 64
loading a new executable 60
process location 45
tvdsvr command syntax 299

–remote option 37, 63, 296

Repl 108

rereading symbol tables 39

Reset View
in Surface Data Window 253

resources, for .Xdefaults file 263

Restart Program command 145

resuming
execution 124
processes with a signal 142

retracing addresses 265

Return (out of function) command 139

Return (out of function) Group command 139

Return (out of function) Thread command 139

right mouse button 8

root window 5, 20
(figure) 20
content of 45
definition 364
dimmed information 140
location 276
navigation 24
raising 19

rounding modes 124

rsh command 67, 83

Run (to selection) command 138

Run (to selection) Group command 138

Run (to selection) Thread command 138

running state 47

–running_color option 296

S

S state 47

Save All Action Points command 215

Save Window to File command 33

saving
action points 215, 265, 296

–sb option 296

scroll speed 26

scrolling
speed 276

Search Backward for String command 31

Search for String command 31

search paths
in .Xdefaults file 277
setting 52, 97

–search_port option 70, 301

select command 17

Select mouse button 17

selecting
Eval button 216
source code, by line 143
source line 136

sending signals to program 51

serial line debugging
definition 364

–serial option 296, 301

server launch command 277

Server Launch Window command 70

–server option 70, 301

Set Command Arguments command 54

Set Continuation Signal command 43, 142

Set Environment Variables command 55

Set PC to Absolute Value command 144

Set PC to Selection command 143
TotalView User’s Guide 383

Index
Set Process Program Group command 132

–set_pw option 66, 301

setting 133
barrier breakpoint 201
breakpoints 190, 197
command arguments 54
environment variables 55
evaluation points 206
HPF defaults, TotalView program 106
input/output files 56
search path 52, 97, 277
signal handling modes 51

setting up, debug session 35, 59, 75

setuid programs 261

shaded box, in tag field 120

share group
definition 364
determining members of 131
discussion 129

shared libraries 291, 329
AIX load function 329
dlopen function 329

sharing action points 199

Shift-Return command (exit field editor) 19

–shm option 297

shortcut keys 18

Show All Process Groups command 130

Show All PVM Tasks command 100

Show All Unattached Processes command 40

Show Event Log Window command 57

showing areas of memory 150

SIGALRM 113

–signal_handling_mode option 297

signals
continuing execution with 142
definition 364
handling in PVM applications 97, 98
handling in TotalView 48, 278, 297
SIGALRM 113

single process group window 131

single stepping
commands 137
continuation signals 142
definition 364
group-level 134
in a nested stack frame 139
into function calls 137
machine instructions 137, 138
mulitprocess programs 134
operating system dependencies 134, 135, 139, 142
over function calls 138
process-level 134
recursive functions 139
return out of function 139
run to a selected line 138
slow performance 261
source line 137, 138
step group 134
thread-level 135
to a selected line 138

Sizing cursor (figure) 23

sleeping state 47

slices
of arrays 172
when visualizing data 236

source code
examining 120
navigating 122

source code pane 259, 272, 279

Source Display Mode command 120

SPARC
architecture 340
floating-point format 344
floating-point registers 341
FPSR register 342

using the 344
general registers 340
PSR register 341

spelling corrector 280

stack
definition 365
384 TotalView User’s Guide

Index
frame
current 122
definition 365
examining 148

trace
definition 365
examining 148

stack trace pane
displaying source 28

standard input, and launching tvdsvr 68

starting
process 21
processes 124
threads 124
TotalView program 16, 37
tvdsvr 37, 64, 70, 99

state
and status 45
of processes and threads 45

status
and state 45
of processes 44
of threads 44

status registers, interpreting 124

stdin, redirect to file 56

stdout, redirect to file 56

Step (instruction) command 137

Step (instruction) Group command 137

Step (instruction) Thread command 137

Step (source line) command 137

Step (source line) Group command 137

Step (source line) Thread command 137

stepping 133
See also single stepping

$stop 209

STOP sign 17

STOP sign, for breakpoints 190

$stop statement 219

–stop_all option 297

–stop_color option 297

$stopall statement 219

stopped state 48
unattached process 47

–stopped_color option 297

stopping
processes 127, 205
threads 127

$stopprocess statement 219

$stopthread statement 219

stride, in array slices 172

<string> data type 160

string search 31

strings, searching for by case 277

structures 157

suffixes
of processes in process groups 129
of source files 119

SunOS 4
key remapping 330
linking to dbfork library 318
list of supported compilers 307
shared libraries 329
swap space 326

SunOS 5
/proc file system 323
key remapping 330
linking to dbfork library 319
list of supported compilers 308
shared libraries 329
swap space 327

SunOS5 Intel-x86
list of supported compilers 309

Suppress All Action Points command 214

Surface
in Directory Window 243

Surface Data Window 249
commands 253
TotalView User’s Guide 385

Index
display 251
manipulations 253
options 252

suspended windows 217

swap space 260, 324–328

switch-based communications 82

symbol tables
definition 365
rereading 39

$systid intrinsic variable 218

T

T state 47, 48

tab character 279

tag field 365

target machine, definition 365

tasks
attaching to 100
diving into 101
PVM 95

–tc option 297

text
copy and paste in field editor 29
saving window contents 32

text string search 31

–text_color option 297

third party debugger and TotalView Visualizer 256

third party visualizer
and TotalView data set format 256

threads
definition 14
dimmed, in the root window 140
displaying source 28
ID format 22
listing 20, 22
single stepping 133
stack trace 22
starting 124
status of 44

stopping 127

thread-specific breakpoints 218

tid 182

$tid intrinsic variable 218

timeout
TotalView setting 83

–title_color option 297

Toggle Laminated Display command 177

Toggle Thread Laminated Display command 177

totalview command 16, 37, 43, 287
command-line options 264
description 287
environment variables 55
options 288
synopsis 287

TotalView program
core files 37
displaying data 8
displaying menus 17
distributed debugging 10
help window 14
host machine definition 10
HPF default settings 106
mouse buttons 17
quitting 33
shortcut keys 18
starting 16
starting a process 21
target machine definition 10
visualizing array data 9–10

TotalView Visualizer. 241–255
See also Visualizer

TotalView windows
action point List pane 23
displaying remote hostnames 22
editing cursor 29
EVAL sign 17
help 14
process 5, 20–25
process groups 5
program counter arrow 23
refreshing 19
386 TotalView User’s Guide

Index
root 5, 19, 24
saving as text file 32
scroll speed 26
scrolling 25–27
selecting objects 17
setting breakpoints 17
sizing 23
Sizing cursor 23
Stack panes 22
STOP sign 17
Tag field (figure) 23
text string search 31
Thread List pane 22
variable 5

TotalView*hpf X resource 109

transient-for windows 281

troubleshooting iv, 259

tvdsvr
attaching to 101
launching 66
launching, arguments 68
–verbosity option 277

tvdsvr command 299, 365
auto-launch feature 64
description 299
enabling launch of 277
environment variables 55
options 300
password 299
starting 64, 277
synopsis 299
timeout while launching 68, 278
use with DPVM applications 300
use with PVM applications 96, 301

type casting 154
examples 161

type strings
built-in 158
editing 154
for opaque types 162
parameter in .Xdefaults file 267

typedef datatype 157

U

unattached processes
state 46
window

content of 45
discussion 41

undiving
definition 153, 365
from windows 153
icon 152

unions 157

Unsuppress All Action Points command 214

unwinding the stack 144

Update Process Info command 127

Update PVM Task List command 100

updating
visualization displays 238

upper bound, of array slices 172

-user_threads option 297

V

Value field 216

variable
displaying contents 28

Variable command 148, 149, 150, 176

variable window 5
condition 184
definition 366
discussion 148
displaying 148
duplicating 153
laminated display 177
location 268
to display area of memory 151
tracking addresses 148

variables
changing the value 153
displaying all globals 149
intrinsic 218
TotalView User’s Guide 387

Index
laminated display 177
local, diving into 148

–verbosity option 66, 298, 302
tvdsvr 277

visualization
display data 232
extract data 232

Visualize 109

$visualize 239–240

visualize
command 255

Visualize (v) command 237

$visualize built-in statement 220

Visualize Distribution command 109

$visualize EVAL 108

visualize.h 256

Visualizer
choosing method for displaying data 246
data sets to visualize 236
Data Window 244
Directory Window 242
graphs

display 247, 248
manipulating 248

launch
command, change shell 235
configuring 234
from command line 254
options 234
window 234

surface data
display options 251
manipulating display 253

Surface Data Window 249
third party

adapting to 256
and TotalView Debugger 233

windows, types of 242

visualizer
process, definition 366

visualizing

and using slices 236
data 231
data sets

from a file 255
from variable window 237
in expressions using $visualize 239

visualizing data 242

<void> data type 160

W

waiters 185

windows 152
action points 211, 266
closing 152
data 244
Data Window 245
Directory Window 242
evaluation 269

See also expression evaluation window
event log 57, 269
expression 216
global variables 150, 270
graph data 247
help 271
machine instructions in 151
offset between 269
override-redirect 275
problems with 259
process 273
process groups 130
PVM tasks and configuration 101
root, placing 276
single process group 131
Surface Data Window 249
suspended 217
transient-for 281
unattached processes 41
variable 148, 149, 151, 268
visualizer

launch 234

Windows, displaying New Base Window 153
388 TotalView User’s Guide

Index
X

X resource option 288

.Xdefaults file 263

xep 101

xrdb command 263

–Xresource=value option 288

xterm
launching tvdsvr from 68
problems with 259

Z

Z state 47

zombie state 47
TotalView User’s Guide 389

	Contents
	List of Figures
	List of Tables
	CHAPTER 1: Introduction
	TotalView’s Advantages
	Figure�1.� Debugging a Remote Program with TotalVi...
	Figure�2.� Debugging a Distributed Program with To...

	TotalView’s Windows
	Figure�3.� Sample TotalView Session

	Examining Source and Machine Code
	Controlling Processes and Threads
	Using Action Points
	Examining and Manipulating Data
	Visualizing Array Data
	Distributed Debugging
	Figure�4.� The TotalView Debugger Server

	Multiprocess Programs
	Multithreaded Programs
	Context-Sensitive Help

	CHAPTER 2: TotalView Basics
	Compiling Programs
	Starting TotalView
	Using the Mouse Buttons
	Table�1.� Mouse Button Functions

	Using Menu and Keyboard Commands
	Figure�5.� Example TotalView Menu and Submenu

	Getting Help
	Using the Primary Windows
	Figure�6.� Root Window
	Starting A Process
	Figure�7.� Process Window
	Figure�8.� Program Counter

	Sizing Process Window Panes
	Figure�9.� The Sizing Cursor

	Navigating in the Process Window
	Figure�10.� Process Window Navigation Controls

	Navigating in the Root Window
	The Process Window Stack

	Scrolling Windows and Fields
	Scrolling Windows
	Figure�11.� Scroll Bar

	Scrolling Multiline Fields
	Figure�12.� Scrollable Multiline Field

	Diving into Objects
	Table�2.� Uses for Diving�

	Editing Text
	Figure�13.� Editing Cursor
	Table�3.� Field Editor Commands (Continued)

	Searching for Text
	Using the Spelling Corrector
	Figure�14.� Dialog Box for Spelling Corrector

	Saving the Contents of Windows
	Exiting from the TotalView Debugger

	CHAPTER 3: Setting Up a Debugging Session
	Compiling Programs
	Table�4.� Compiler Considerations�

	Starting the TotalView Debugger
	Loading Executables
	Loading a New Executable
	Figure�15.� New Program Window Dialog Box

	Reloading a Recompiled Executable

	Attaching to Processes
	Attaching Using Show All Unattached Processes
	Figure�16.� Unattached Processes Window

	Attaching Using New Program Window
	Figure�17.� New Program Window Dialog Box

	Detaching from Processes
	Examining a Core File
	Determining the Status of Processes and Threads
	Process Status
	Thread Status
	Figure�18.� Root Window Showing Process and Thread...

	Unattached Process States
	Table�5.� Summary of Unattached Process States�

	Attached Process States
	Table�6.� Summary of Attached Process and Thread S...

	Handling Signals
	Table�7.� Default Signal Handling Behavior
	Figure�19.� Dialog Box for Set Signal Handling Mod...

	Setting Search Paths
	Figure�20.� Dialog Box for Set Search Directory Co...

	Setting Command Arguments
	Figure�21.� Dialog Box for Set Command Arguments C...

	Specifying Environment Variables
	Figure�22.� Environment Variables Dialog Box

	Setting Input and Output Files ����
	Figure�23.� Dialog Box for Input from File Command...

	Monitoring TotalView Sessions
	Figure�24.� Event Log Window

	CHAPTER 4: Setting Up Remote Debugging Sessions
	Debugging Remote Processes
	Loading a Remote Executable
	Figure�25.� New Program Window Dialog Box

	Attaching to a Remote Process

	Connecting to Remote Machines
	Figure�26.� Remote Host Connection

	Starting the Debugger Server for Remote Debugging
	The Auto�Launch Feature
	Figure�27.� Auto-Launch Feature

	Auto-Launch Options
	The Server Launch Command �
	Changing the rsh Command
	Changing the Arguments
	The Connection Timeout
	Disabling Auto�Launch
	Changing the Options
	Figure�28.� Dialog Box for Launching Debugger Serv...

	Starting the Debugger Server Manually
	Figure�29.� Manual Launching of Debugger Server

	Debugging Over a Serial Line
	Figure�30.� TotalView Debugging Session over a Ser...
	Start the TotalView Debugger Server
	Starting TotalView on a Serial Line
	New Program Window
	Figure�31.� New Program Window Dialog Box

	CHAPTER 5: Setting Up Parallel Debugging Sessions
	Debugging MPI Applications
	Debugging MPICH Applications
	Starting TotalView on an MPICH Job
	Figure�32.� Dialog Box for Stopping Spawned Proces...

	Attaching to an MPICH Job
	Figure�33.� Processes that TotalView doesn’t own W...

	MPICH P4 procgroup Files

	Debugging Digital MPI Applications
	Starting TotalView on a Digital MPI Job
	Attaching to a Digital MPI Job

	Debugging IBM MPI (PE) Applications
	Preparing to Debug a PE Application
	Starting TotalView on a PE Job
	Setting Breakpoints
	Figure�34.� Parallel Tasks Dialog Box

	Starting Parallel Tasks
	Attaching to a PE Job
	Attach from a Node Running poe
	Attach from Node Not Running poe

	Debugging SGI MPI Applications
	Starting Totalview with SGI MPI
	Attaching to an SGI MPI Job

	Displaying Message Queue State
	Message Queue Display Basics
	Figure�35.� Message State Window

	Message Operations
	MPI Process Diving
	MPI Buffer Diving
	Pending Receive Operations
	Figure�36.� Message State Pending Receive Operatio...

	Unexpected Messages
	Figure�37.� Message State Unexpected Messages

	Pending Send Operations
	Figure�38.� Message State Pending Send Operation

	MPI Debugging Troubleshooting

	Debugging PVM and DPVM Applications
	Supporting Multiple Sessions
	Setting Up ORNL PVM Debugging
	Starting an ORNL PVM Session
	Starting a DPVM Session
	PVM/DPVM Automatic Process Acquisition
	Attaching to PVM/DPVM Tasks
	Figure�39.� PVM Tasks and Configuration Window

	Reserved Message Tags
	Debugging Dynamic Libraries
	Cleanup of Processes

	Debugging Portland Group, Inc. (PGI) HPF Applicati...
	Installing TotalView for HPF
	Dynamically Loaded Library
	Table�8.� PGHPF Dynamic Library Search Order (Cont...

	Setting Up PGHPF Compiler Defaults
	Setting Up MPICH
	Setting TotalView Defaults
	Compiling HPF for Debugging
	Starting HPF Programs
	PGHPF smp and rpm libraries

	Starting HPF Programs with MPICH
	Workstation Clusters Using MPICH
	IBM Parallel Environment

	HPF TotalView Advantages
	Figure�40.� Block Distributed Array on Three Proce...

	Debugging generated FORTRAN 77

	Parallel Debugging Tips
	General Parallel Debugging Tips
	MPICH Specific Debugging Tips
	IBM PE Specific Debugging Tips

	CHAPTER 6: Debugging Programs
	Finding the Source Code for Functions
	Figure�41.� Function Name Dialog
	Resolving Ambiguous Names
	Figure�42.� Dialog for Resolving Ambiguous Functio...

	Finding the Source Code for Files
	Source File Extensions
	Table�9.� Source Language Mapping�

	Examining Source and Assembler Code
	Table�10.� Ways to Display Source and Assembler Co...
	Figure�43.� Different Ways to Display Assembler Co...

	Current Stack Frame
	Editing Source Text
	Changing the Editor Launch String
	Interpreting Status and Control Registers
	Starting Processes and Threads
	Creating a Process without Starting it
	Creating a Process by Single-Stepping

	Stopping Processes and Threads
	Holding and Releasing Processes
	Examining Process Groups
	Types of Process Groups
	Figure�44.� Example of Program Groups and Share Gr...

	Displaying Process Groups
	Figure�45.� Process Groups Window
	Figure�46.� Single Process Group Window

	Changing Program Groups
	Figure�47.� Dialog for Changing Process Groups

	Finding Active Processes

	Setting a Breakpoint
	Single-Stepping
	Process-Level Single-Stepping
	Group-Level Single-Stepping
	Thread-Level Single-Stepping
	Thread-Level Control
	Selecting Source Lines
	Figure�48.� Dialog for Resolving Ambiguous Source ...

	Single-Step Commands
	Stepping Into Functions Calls
	Stepping Over Function Calls
	Executing to a Selected Line
	Executing to the Completion of a Function

	Displaying Thread and Process Locations
	Figure�49.� Dimmed Process Information in the Root...

	Continuing with a Specific Signal
	Setting the Program Counter
	Deleting Processes
	Restarting Programs

	CHAPTER 7: Examining and Changing Data
	Displaying Variable Windows
	Displaying Local Variables and Registers
	Figure�50.� Diving into Local Variables and Regist...

	Displaying a Global Variable
	Figure�51.� Variable Window for a Global Variable

	Displaying All Global Variables
	Figure�52.� Global Variables Window

	Displaying Areas of Memory
	Figure�53.� Variable Window for Area of Memory

	Displaying Machine Instructions
	Figure�54.� Variable Window with Machine Instructi...

	Closing Variable Windows

	Diving in Variable Windows
	Figure�55.� Nested Dives

	Changing the Values of Variables
	Changing the Data Type of Variables
	How TotalView Displays C Data Types
	Table�11.� Common Type Strings�
	If You Prefer C Cast Syntax
	Pointers to Arrays
	Arrays
	Typedefs
	Structures
	Unions

	Built-In Type Strings
	Table�12.� Built-In Type Strings (Continued)
	Character arrays (<string> data type)
	Areas of memory (<void> data type)
	Instructions (<code> data type)

	Type Casting Examples
	Example: Displaying the argv Array
	Example: Displaying Declared Arrays
	Example: Displaying Allocated Arrays

	Opaque Type Definitions
	Changing the Address of Variables
	Changing Type Strings to Display Machine Instructi...
	Displaying C++ Types
	Classes
	Figure�56.� Displaying Nested C++ Classes

	Changing Class Types in C++
	Figure�57.� C++ Type Cast to Base Class Dialog Box...
	Figure�58.� C++ Type Cast to Derived Class Dialog ...

	Displaying Fortran Types
	Displaying Fortran Common Blocks
	Figure�59.� Diving into Common Block List in Stack...

	Displaying Fortran Module Data
	Figure�60.� Fortran Modules Window

	Debugging Fortran 90 Modules
	F90 User Defined Type
	Figure�61.� Fortran 90 User Defined Type

	F90 Deferred Shape Array Type
	F90 Pointer Type
	Figure�62.� F90 Pointer Value

	Displaying Large Arrays

	Displaying Array Slices
	Slice Descriptions
	Strides
	Figure�63.� Slice Displaying the Four Corners of a...
	Figure�64.� Fortran Array with Inverse Order and L...

	Using Slices in the Variable Command
	Figure�65.� Variable Window for array2

	Displaying a Variable in All Processes or Threads
	Figure�66.� Laminated Scalar Variable
	Figure�67.� Laminated Variable at Different Addres...
	Figure�68.� Laminated Array and Structure
	Diving in a Laminated Pane
	Editing a Laminated Variable
	Visualizing a Laminated Data Pane

	Visualizing Array Data
	Displaying Mutex Information
	Figure�69.� Mutex Info Window
	Figure�70.� Mutex Data Window

	Displaying Condition Variable Information
	Figure�71.� Condition Variable Window

	CHAPTER 8: Setting Action Points
	Action Points
	Figure�72.� Action Point Symbols

	Setting Breakpoints
	Setting Source-Level Breakpoints
	Figure�73.� Breakpoint Symbol

	Selecting Ambiguous Source Lines
	Figure�74.� Ambiguous Source Line Selection Dialog...

	Diving into Ambiguous Source Lines
	Figure�75.� Ambiguous Source Line Dive Dialog Box

	Toggling Breakpoints at Locations
	Figure�76.� Toggle Breakpoint at Location Dialog B...
	Table�13.� Breakpoint at Location Actions�

	Toggling Breakpoints at Ambiguous Locations
	Figure�77.� Ambiguous Function Name Dialog Box

	Setting Machine-Level Breakpoints
	Thread-Specific Breakpoints
	Breakpoints for Multiple Processes
	Figure�78.� Action Point Options Dialog Box

	Breakpoint for Programs that fork()/execve()
	Processes That Call fork()
	Processes That Call execve()

	Example: Multiprocess Breakpoint
	Table�14.� Setting Breakpoints in Multiprocess Pro...

	Process Barrier Breakpoints
	Process Barrier Breakpoint States
	Setting a Process Barrier Breakpoint
	Figure�79.� Action Point Options Dialog Box
	Figure�80.� Process Barrier Breakpoint in Process ...

	Releasing Processes from Process Barrier Points
	Toggling Between a Breakpoint and a Process Barrie...
	Deleting a Process Barrier Point
	Changes when Setting and Clearing a Barrier Point

	Defining Evaluation Points
	Setting Evaluation Points
	Setting Conditional Breakpoints
	Patching Programs
	Conditionally Patching Out Code
	Patching In a Function Call
	Correcting Code

	Interpreted vs. Compiled Expressions
	Interpreted expressions
	Compiled expressions
	Figure�81.� Stopped Execution of Compiled Expressi...

	Defining and Using Event Points
	Controlling Action Points
	Displaying the Action Points Window
	Figure�82.� Action Points Window

	Displaying the Action Point Options Dialog
	Figure�83.� Action Point Options Dialog Box

	Commands for Controlling Action Points
	Table�15.� Clearing, Disabling, Enabling, Suppress...

	Saving Action Points in a File
	Evaluating Expressions
	Figure�84.� Sample Expression Window

	Writing Code Fragments
	Intrinsic Variables
	Table�16.� Intrinsic Variables�

	Built-In Statements
	Table�17.� Built-In Statements That Can Be Used in...

	C Constructs Supported
	Syntax
	Data Types and Declarations
	Statements

	Fortran Constructs Supported
	Syntax
	Data Types and Declarations
	Statements

	Writing Assembler Code
	Figure�85.� ASM Button in Expression Window
	Table�18.� TotalView Assembler Operators (Continue...
	Table�19.� TotalView Assembler Pseudo Ops (Continu...

	CHAPTER 9: Visualizing Data
	How the Visualizer Works
	Figure�86.� TotalView Visualizer Connection
	Figure�87.� TotalView Visualizer Relationships

	Configuring TotalView to Launch the Visualizer
	Figure�88.� The Visualizer Launch Window

	Data Types that TotalView Can Visualize
	Figure�89.� A Three Dimensional Array Sliced to Tw...

	Visualizing Data from the Variable Window
	Figure�90.� Variable Window

	Visualizing Data in Expressions
	Table�20.� $visualize examples for C and Fortran�
	Visualizer Animation

	The TotalView Visualizer ��
	Figure�91.� Visualizer Windows
	Directory Window
	Figure�92.� Sample Visualizer Directory Window
	Table�21.� Directory Window Menu Commands� �

	Data Windows
	Figure�93.� Sample Visualizer Data Windows
	Table�22.� Data Window Menu Commands�

	Views of Data
	Graph Data Window
	Figure�94.� Visualizer Graph Data Window
	Displaying Graphs
	Table�23.� Graph Data Window Options Dialog�

	Manipulating Graphs
	Table�24.� Graph Data Window Manipulations (Contin...
	Figure�95.� Display of Random Data

	Surface Data Window�
	Figure�96.� Two Dimensional Surface Visualizer Dat...
	Figure�97.� Three Dimensional Surface Visualizer D...
	Displaying Surface Data
	Table�25.� Surface Data Window Options�
	Table�26.� Surface Data Window Menu Commands�

	Manipulating Surface Data
	Table�27.� Surface Data Window Manipulations � (Co...

	Launching the Visualizer from Command Line�
	Adapting a Third Party Visualizer to the TotalView...
	Table�28.� Data-Set Header Fields (Continued)

	CHAPTER 10: Troubleshooting
	Table�29.� Symptoms and Solutions (Continued)

	CHAPTER 11: X Resources
	TotalView X Resources
	Window Locations

	Visualizer X Resources

	CHAPTER 12: TotalView Command Syntax
	Synopsis
	Description
	Arguments
	Options
	Table�30.� C++ Demangling Command Line Options� (C...

	CHAPTER 13: TotalView Debugger Server Command Synt...
	Options

	APPENDIX A: Compilers and Environments
	Supported Compilers and Environments
	AIX on RS/6000 Systems
	Table�31.� Supported Compilers and Environments on...

	Digital UNIX on Digital Alpha Systems
	Table�32.� Supported Compilers and Environments on...

	IRIX on SGI MIPS Systems
	Table�33.� Supported Compilers and Environments on...

	SunOS 4 on Solaris Systems
	Table�34.� Supported Compilers and Environments on...

	SunOS 5 on SPARC Solaris Systems
	Table�35.� Supported Compilers and Environments on...

	SunOS 5 on Intel-x86 Solaris Systems
	Table�36.� Supported Compilers and Environments on...

	Compiling with Debugging Symbols
	AIX on RS/6000 Systems
	Table�37.� Compiling with Debugging Symbols on AIX...

	Digital UNIX on Digital Alpha Systems
	Table�38.� Compiling with Debugging Symbols on Dig...

	IRIX on SGI MIPS Systems
	Table�39.� Compiling with Debugging Symbols on IRI...

	SunOS 4 on Solaris Systems
	Table�40.� Compiling with Debugging Symbols on Sun...

	SunOS 5 on SPARC or Intel- x86 Solaris Systems
	Table�41.� Compiling with Debugging Symbols on Sun...

	Compiling with Exception Data on Alpha Digital UNI...
	Linking with the dbfork Library
	AIX on RS/6000 Systems
	Linking C++ Programs with dbfork

	Alpha Digital UNIX
	SunOS 4
	SunOS 5 SPARC or Intel- x86
	IRIX6-MIPS

	APPENDIX B: Operating Systems
	Supported Operating Systems
	Mounting the /proc File System
	Digital UNIX, SunOS 5, and IRIX
	Table�42.� Commands for Determining Whether /proc ...

	Digital UNIX and SunOS 5
	Table�43.� Commands for Automatically Mounting /pr...

	IRIX

	Swap Space
	Digital UNIX
	AIX
	SunOS 4
	SunOS 5
	IRIX

	Shared Libraries
	Remapping Keys
	Expression System
	AIX
	Digital UNIX
	Expression on the Power

	APPENDIX C: Architectures
	Power
	Power General Registers
	Table�44.� Power General Purpose Integer Registers...

	Power MSR Register
	Table�45.� Power MSR Register Bit Settings (Contin...

	Power Floating- Point Registers
	Table�46.� Power Floating-Point Registers�

	Power FPSCR Register
	Table�47.� Power FPSCR Register Bit Settings (Cont...

	Using the Power FPSCR Register
	Power Floating- Point Format

	SPARC
	SPARC General Registers
	Table�48.� SPARC General Registers�

	SPARC PSR Register
	Table�49.� SPARC PSR Register Bit Settings�

	SPARC Floating-Point Registers
	Table�50.� SPARC Floating-Point Registers (Continu...

	SPARC FPSR Register
	Table�51.� SPARC FPSR Register Bit Settings (Conti...

	Using the SPARC FPSR Register
	SPARC Floating-Point Format

	Alpha
	Alpha General Registers
	Table�52.� Alpha General Purpose Integer Registers...

	Alpha Floating- Point Registers
	Table�53.� Alpha Floating-Point Registers�

	Alpha FPCR Register
	Table�54.� Alpha FPCR Register Bit Settings (Conti...

	Alpha Floating- Point Format

	MIPS
	MIPS General Registers
	Table�55.� MIPS General (Integer) Registers (Conti...

	MIPS SR Register
	Table�56.� MIPS SR Register Bit Settings (Continue...

	MIPS Floating- Point Registers
	Table�57.� MIPS Floating-Point Registers �

	MIPS FCSR Register
	Table�58.� MIPS FCSR Register Bit Settings (Contin...

	Using the MIPS FCSR Register
	MIPS Floating- Point Format
	MIPS Delay Slot Instructions

	Intel-x86
	Intel-x86 General Registers
	Table�59.� Intel-x86 General Registers (Continued)...

	Intel-x86 Floating-Point Registers
	Table�60.� Intel-x86 Floating-Point Registers (Con...

	Intel-x86 FPCR Register
	Table�61.� Intel-x86 FPCR Register Bit Settings (C...

	Using the Intel- x86 FPCR Register
	Intel-x86 FPSR Register
	Table�62.� Intel-x86 FPSR Register Bit Settings (C...

	Intel-x86 Floating-Point Format

	Glossary
	Index

